File size: 2,650 Bytes
5ccb60d
 
 
 
 
 
 
9202118
5ccb60d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15b57f6
46bfcc6
9202118
46bfcc6
 
15b57f6
9202118
 
15b57f6
 
 
 
 
 
9202118
 
5ccb60d
 
 
 
 
 
 
15b57f6
5ccb60d
 
15b57f6
 
9202118
 
46bfcc6
 
5ccb60d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# logging.py

import os
import uuid
import time
from huggingface_hub import CommitScheduler, HfApi
from PIL import Image
import numpy as np

APP_VERSION = "0_3"
HF_DATASET_REPO = "LPX55/upscaler_logs"  # Change to your dataset repo
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")   # Make sure this is set in your environment

LOG_DIR = "logs_" + APP_VERSION
IMAGE_DIR = os.path.join(LOG_DIR, "upscaler")

LOG_FILE = os.path.join(LOG_DIR, f"{int(time.time())}-logs.csv")


scheduler = CommitScheduler(
    repo_id=HF_DATASET_REPO,
    repo_type="dataset",
    folder_path=LOG_DIR,
    every=5,
    private=True,
    token=HF_TOKEN,
    path_in_repo="v" + APP_VERSION

)

def save_image(image_id, image_path: Image.Image) -> None:
    os.makedirs(IMAGE_DIR, exist_ok=True)
    print("Image ID: " + image_id)
    print("Image ID Type: " + str(type(image_id)))
    save_image_path = os.path.join(IMAGE_DIR, f"{image_id}.png")
    with scheduler.lock:
        try:
            print("Image path: " + image_path)
            print("Type: " + str(type(image_path)))
            commit_image = Image.open(image_path)
            commit_image = commit_image.convert("P", palette=Image.ADAPTIVE, colors=256)
            commit_image.save(save_image_path)
            print(f"Saved image: {save_image_path}")
        except Exception as e:
            print(f"Error saving image: {str(e)}")

def log_params(
    prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end,
    before_image, after_image, user=None
):
    before_id = str(uuid.uuid4()) + "_before.png"
    after_id = str(uuid.uuid4()) + "_after.png"
    
    before_path = os.path.join(IMAGE_DIR, before_id)
    after_path = os.path.join(IMAGE_DIR, after_id)
    print("Type before: " + str(type(before_image)))
    print("Type after: " + str(type(after_image)))
    save_image(before_id, before_image)
    save_image(after_id, after_image)
    #print("Before path: " + before_path)
    #print("After path: " + after_path)

    is_new = not os.path.exists(LOG_FILE)
    with open(LOG_FILE, "a", newline='') as f:
        import csv
        writer = csv.writer(f)
        if is_new:
            writer.writerow([
                "timestamp", "user", "prompt", "scale", "steps", "controlnet_conditioning_scale",
                "guidance_scale", "seed", "guidance_end", "before_image", "after_image"
            ])
        writer.writerow([
            time.strftime("%Y-%m-%dT%H:%M:%S"),
            user or "anonymous",
            prompt, scale, steps, controlnet_conditioning_scale,
            guidance_scale, seed, guidance_end, before_path, after_path
        ])