File size: 2,217 Bytes
2fafc94
 
 
 
 
 
 
 
 
e607fab
 
2fafc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
646f8c2
 
2fafc94
 
 
 
 
 
 
 
 
646f8c2
2fafc94
646f8c2
2fafc94
 
 
 
 
 
 
 
646f8c2
 
2fafc94
 
 
 
 
 
 
646f8c2
2fafc94
 
 
 
 
 
 
646f8c2
2fafc94
 
 
 
 
e607fab
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# from langchain import HuggingFaceHub, LLMChain
from langchain.llms import HuggingFacePipeline
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    pipeline,
)
from transformers import LlamaForCausalLM, AutoModelForCausalLM, LlamaTokenizer
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_groq import ChatGroq


from langchain.chat_models import ChatOpenAI
from langchain.llms import HuggingFaceTextGenInference


def get_llm_hf_online(inference_api_url=""):
    """Get LLM using huggingface inference."""
    
    if not inference_api_url:  # default api url
        inference_api_url = (
            "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
        )

    llm = HuggingFaceTextGenInference(
        verbose=True,  # Provides detailed logs of operation
        max_new_tokens=1024,  # Maximum number of token that can be generated.
        top_p=0.95,  # Threshold for controlling randomness in text generation process.
        temperature=0.1,
        inference_server_url=inference_api_url,
        timeout=10,  # Timeout for connection  with the url
    )

    return llm


def get_llm_hf_local(model_path):
    """Get local LLM."""
    
    model = LlamaForCausalLM.from_pretrained(
        model_path, device_map="auto"
    )
    tokenizer = AutoTokenizer.from_pretrained(model_path)

    # print('making a pipeline...')
    # max_length has typically been deprecated for max_new_tokens
    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        max_new_tokens=1024,  # better setting?
        model_kwargs={"temperature": 0.1},  # better setting?
    )
    llm = HuggingFacePipeline(pipeline=pipe)

    return llm



def get_llm_openai_chat(model_name, inference_server_url):
    """Get openai-like LLM."""
    
    llm = ChatOpenAI(
        model=model_name,
        openai_api_key="EMPTY",
        openai_api_base=inference_server_url,
        max_tokens=1024,  # better setting?
        temperature=0,
    )

    return llm


def  get_groq_chat(model_name="llama-3.1-70b-versatile"):

    llm = ChatGroq(temperature=0, model_name=model_name)
    return llm