File size: 7,956 Bytes
2fafc94
e607fab
 
2fafc94
 
 
e607fab
 
 
2fafc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e607fab
 
 
2fafc94
e607fab
2fafc94
 
 
 
 
 
 
 
 
 
 
 
e607fab
2fafc94
 
e607fab
2fafc94
 
e607fab
2fafc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import shutil

from langchain.document_loaders import (
    PyMuPDFLoader,
)
from langchain.docstore.document import Document

from langchain.vectorstores import Chroma

from langchain.text_splitter import (
    RecursiveCharacterTextSplitter,
    SpacyTextSplitter,
)

def load_pdf_as_docs(pdf_path, loader_module=None, load_kwargs=None):
    """Load and parse pdf file(s)."""
    
    if pdf_path.endswith('.pdf'):  # single file
        pdf_docs = [pdf_path]
    else:  # a directory
        pdf_docs = [os.path.join(pdf_path, f) for f in os.listdir(pdf_path) if f.endswith('.pdf')]

    if load_kwargs is None:
        load_kwargs = {}

    docs = []
    if loader_module is None:  # set pdf loader
        loader_module = PyMuPDFLoader
    for pdf in pdf_docs:
        loader = loader_module(pdf, **load_kwargs)
        doc = loader.load()
        docs.extend(doc)
        
    return docs

def load_xml_as_docs(xml_path, loader_module=None, load_kwargs=None):
    """Load and parse xml file(s)."""
    
    from bs4 import BeautifulSoup
    from unstructured.cleaners.core import group_broken_paragraphs
    
    if xml_path.endswith('.xml'):  # single file
        xml_docs = [xml_path]
    else:  # a directory
        xml_docs = [os.path.join(xml_path, f) for f in os.listdir(xml_path) if f.endswith('.xml')]
    
    if load_kwargs is None:
        load_kwargs = {}

    docs = []
    for xml_file in xml_docs:
        # print("now reading file...")
        with open(xml_file) as fp:
            soup = BeautifulSoup(fp, features="xml")    # txt is simply the a string with your XML file
            pageText = soup.findAll(string=True)
            parsed_text = '\n'.join(pageText)  # or " ".join, seems similar
            # # Clean text
            parsed_text_grouped = group_broken_paragraphs(parsed_text)
            
            # get metadata
            try:
                from lxml import etree as ET
                tree = ET.parse(xml_file)

                # Define namespace
                ns = {"tei": "http://www.tei-c.org/ns/1.0"}
                # Read Author personal names as an example
                pers_name_elements = tree.xpath("tei:teiHeader/tei:fileDesc/tei:titleStmt/tei:author/tei:persName", namespaces=ns)
                first_per = pers_name_elements[0].text
                author_info = first_per + " et al"

                title_elements = tree.xpath("tei:teiHeader/tei:fileDesc/tei:titleStmt/tei:title", namespaces=ns)
                title = title_elements[0].text

                # Combine source info
                source_info = "_".join([author_info, title])
            except:
                source_info = "unknown"
                
            # maybe even better TODO: discuss with Jens
            # first_author = soup.find("author")
            # publication_year = soup.find("date", attrs={'type': 'published'})
            # title = soup.find("title")
            # source_info = [first_author, publication_year, title]
            # source_info_str = "_".join([info.text.strip() if info is not None else "unknown" for info in source_info])
    
            doc =  [Document(page_content=parsed_text_grouped, metadata={"source": source_info})]#, metadata={"source": "local"})

            docs.extend(doc)
            
    return docs


def get_doc_chunks(docs, splitter=None):
    """Split docs into chunks."""
    
    if splitter is None:
        # splitter = RecursiveCharacterTextSplitter(
        #    # separators=["\n\n", "\n"], chunk_size=1024, chunk_overlap=256
        #    separators=["\n\n", "\n"], chunk_size=256, chunk_overlap=128
        # )
        splitter = SpacyTextSplitter.from_tiktoken_encoder(
            chunk_size=512,
            chunk_overlap=128,
        )
    chunks = splitter.split_documents(docs)
    
    return chunks


def persist_vectorstore(document_chunks, embeddings, persist_directory="db", overwrite=False):
    # embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
    # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    if overwrite:
        shutil.rmtree(persist_directory)  # Empty and reset db
    db = Chroma.from_documents(documents=document_chunks, embedding=embeddings, persist_directory=persist_directory)
    # db.delete_collection()
    db.persist()
    # db = None
    # db = Chroma(persist_directory="db", embedding_function = embeddings, client_settings=CHROMA_SETTINGS)
    # vectorstore = FAISS.from_documents(documents=document_chunks, embedding=embeddings)
    return db
    
    
class VectorstoreManager:
    
    def __init__(self):
        self.vectorstore_class = Chroma
        
    def create_db(self, embeddings):
        db = self.vectorstore_class(embedding_function=embeddings)
        
        self.db = db
        return db
    
    
    def load_db(self, persist_directory, embeddings):
        """Load local vectorestore."""
        
        db = self.vectorstore_class(persist_directory=persist_directory, embedding_function=embeddings)
        self.db = db
        
        return db
    
    def create_db_from_documents(self, document_chunks, embeddings, persist_directory="db", overwrite=False):
        """Create db from documents."""
        
        if overwrite:
            shutil.rmtree(persist_directory)  # Empty and reset db
        db = self.vectorstore_class.from_documents(documents=document_chunks, embedding=embeddings, persist_directory=persist_directory)
        self.db = db
        
        return db
    
    def persist_db(self, persist_directory="db"):
        """Persist db."""
        
        assert self.db
        self.db.persist()  # Chroma
        
class RetrieverManager:
    # some other retrievers Using Advanced Retrievers in LangChain https://www.comet.com/site/blog/using-advanced-retrievers-in-langchain/
    
    def __init__(self, vectorstore, k=10):
        
        self.vectorstore = vectorstore
        self.retriever = vectorstore.as_retriever(search_kwargs={"k": k})  #search_kwargs={"k": 8}),
        
    def get_rerank_retriver(self, base_retriever=None):
        
        if base_retriever is None:
            base_retriever = self.retriever
        # with rerank
        from rerank import BgeRerank
        from langchain.retrievers import ContextualCompressionRetriever
        
        compressor = BgeRerank()
        compression_retriever = ContextualCompressionRetriever(
            base_compressor=compressor, base_retriever=base_retriever
        )
        
        return compression_retriever
        
    def get_parent_doc_retriver(self, documents, store_file="./store_location"):
        # TODO need better design
        # Ref: explain how it works: https://clusteredbytes.pages.dev/posts/2023/langchain-parent-document-retriever/
        from langchain.storage.file_system import LocalFileStore
        from langchain.storage import InMemoryStore
        from langchain.storage._lc_store import create_kv_docstore
        from langchain.retrievers import ParentDocumentRetriever
        # Ref: https://stackoverflow.com/questions/77385587/persist-parentdocumentretriever-of-langchain
        # fs = LocalFileStore("./store_location")
        # store = create_kv_docstore(fs)
        docstore = InMemoryStore()
        
        # TODO: how to better set this?
        parent_splitter = RecursiveCharacterTextSplitter(separators=["\n\n", "\n"], chunk_size=1024, chunk_overlap=256)
        child_splitter = RecursiveCharacterTextSplitter(separators=["\n\n", "\n"], chunk_size=256, chunk_overlap=128)
        
        retriever = ParentDocumentRetriever(
            vectorstore=self.vectorstore,
            docstore=docstore,
            child_splitter=child_splitter,
            parent_splitter=parent_splitter,
            search_kwargs={"k":10}  # Better settings?
        )
        retriever.add_documents(documents)#, ids=None)
        
        return retriever