Spaces:
Running
Running
import torch | |
from methods.elasticdnn.api.model import ElasticDNN_OfflineSenClsFMModel, ElasticDNN_OfflineSenClsMDModel | |
from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg | |
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg | |
from methods.elasticdnn.model.base import ElasticDNNUtil | |
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
from bert import FMLoRA_Bert_Util | |
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
from bert import FM_to_MD_Bert_Util | |
from bert import ElasticBertUtil | |
from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module | |
from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
from data import build_scenario | |
from utils.common.log import logger | |
import torch.nn.functional as F | |
import sys | |
class ElasticDNN_BERT_OfflineClsFMModel(ElasticDNN_OfflineSenClsFMModel): | |
def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): | |
return FM_to_MD_Bert_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], | |
reducing_width_ratio, samples) | |
def get_feature_hook(self) -> LayerActivation: | |
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device) | |
def get_elastic_dnn_util(self) -> ElasticDNNUtil: | |
return ElasticBertUtil() | |
def forward_to_get_task_loss(self, x, y, *args, **kwargs): | |
self.to_train_mode() | |
pred = self.infer(x) | |
return F.cross_entropy(pred, y) | |
def get_lora_util(self) -> FMLoRA_Util: | |
return FMLoRA_Bert_Util() | |
def get_task_head_params(self): | |
head = get_module(self.models_dict['main'], 'classifier') | |
params_name = {k for k, v in head.named_parameters()} | |
logger.info(f'task head params: {params_name}') | |
return list(head.parameters()) | |
class ElasticDNN_BERT_OfflineClsMDModel(ElasticDNN_OfflineSenClsMDModel): | |
def get_feature_hook(self) -> LayerActivation: | |
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device) | |
def forward_to_get_task_loss(self, x, y, *args, **kwargs): | |
self.to_train_mode() | |
return self.models_dict['main'](x, y)['total_loss'] | |
if __name__ == '__main__': | |
from utils.dl.common.env import set_random_seed | |
set_random_seed(1) | |
# 1. init scenario | |
# scenario = build_scenario( | |
# source_datasets_name=['WI_Mask'], | |
# target_datasets_order=['MakeML_Mask'] * 10, | |
# da_mode='close_set', | |
# data_dirs={ | |
# 'COCO2017': '/data/zql/datasets/coco2017', | |
# 'WI_Mask': '/data/zql/datasets/face_mask/WI/Medical mask/Medical mask/Medical Mask/images', | |
# 'VOC2012': '/data/datasets/VOCdevkit/VOC2012/JPEGImages', | |
# 'MakeML_Mask': '/data/zql/datasets/face_mask/make_ml/images' | |
# }, | |
# ) | |
scenario = build_scenario( | |
source_datasets_name=['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', | |
'HL5Domains-NikonCoolpix4300'], | |
target_datasets_order=['HL5Domains-Nokia6610'] * 1, # TODO | |
da_mode='close_set', | |
data_dirs={ | |
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing5Domains/asc/{k.split("-")[1]}' | |
for k in ['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', | |
'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610']} | |
}, | |
) | |
# 2. init model | |
device = 'cuda' | |
from bert import bert_base_sen_cls | |
cls_model = bert_base_sen_cls(num_classes=scenario.num_classes) | |
# x = {'input_ids': torch.tensor([[ 101, 5672, 2033, 2011, 2151, 3793, 2017, 1005, 1040, 2066, 1012, 102]]).to(device), | |
# 'token_type_ids': torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).to(device), | |
# 'attention_mask': torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(device), | |
# 'return_dict': False} | |
# print(cls_model(x)) | |
fm_models_dict_path = save_models_dict_for_init({ | |
'main': cls_model | |
}, __file__, 'fm_bert_pretrained_with_cls_head') | |
fm_model = ElasticDNN_BERT_OfflineClsFMModel('fm', fm_models_dict_path, device) | |
# 3. init alg | |
models = { | |
'fm': fm_model | |
} | |
fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__, 'result')) | |
from PIL import ImageFile | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
# 4. run alg | |
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup | |
fm_lora_alg.run(scenario, hyps={ | |
'launch_tbboard': False, | |
'samples_size': {'input_ids': torch.tensor([[ 101, 5672, 2033, 2011, 2151, 3793, 2017, 1005, 1040, 2066, 1012, 102]]).to(device), | |
'token_type_ids': torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).to(device), | |
'attention_mask': torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(device), 'return_dict': False}, | |
'ab_r': 8, | |
'train_batch_size': 8, | |
'val_batch_size': 16, | |
'num_workers': 16, | |
'optimizer': 'AdamW', | |
'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999]}, | |
'scheduler': 'LambdaLR', | |
'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 310000)}, | |
'num_iters': 50000, | |
'val_freq': 400, | |
# 'fm_lora_ckpt_path': 'experiments/elasticdnn/vit_b_16/offline/fm_lora/cls/results/cls.py/20230607/999995-234355-trial/models/fm_best.pt' | |
}) |