Spaces:
Running
Running
import os | |
gpt_neo_series_id = '1.3B_ckpt' | |
os.environ['gpt_neo_series_id'] = gpt_neo_series_id | |
import torch | |
import torch.nn as nn | |
from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg | |
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg | |
from methods.elasticdnn.model.base import ElasticDNNUtil | |
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
from gpt_neo import getTokenizer, ElasticGPTUtil, FMLoRA_GPT_Util, ElasticDNN_OfflineTextGenFMModel, ElasticDNN_OfflineTextGenMDModel, FM_to_MD_GPT_Util, collate_fn | |
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util | |
from methods.elasticdnn.model.vit import ElasticViTUtil | |
from methods.elasticdnn.api.algs.md_pretraining_index_v2_train_index_and_md import ElasticDNN_MDPretrainingIndexAlg | |
from utils.dl.common.model import LayerActivation2, get_module, get_parameter | |
from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
from data import build_gen_scenario | |
import torch.nn.functional as F | |
import os | |
from utils.dl.common.loss import CrossEntropyLossSoft | |
from new_impl.cv.feat_align.main_gpt_neo import OnlineFeatAlignModel, FeatAlignAlg | |
import tqdm | |
from new_impl.cv.feat_align.mmd import mmd_rbf | |
from new_impl.cv.utils.baseline_da import baseline_da | |
from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel | |
from utils.common.log import logger | |
import nltk | |
from nltk.translate.bleu_score import sentence_bleu, corpus_bleu | |
from nltk.translate.bleu_score import SmoothingFunction | |
import json | |
os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
torch.cuda.set_device(1) | |
device = 'cuda' | |
app_name = 'cls' | |
scenario = build_gen_scenario( | |
source_datasets_name=['No_robots'], | |
target_datasets_order=['Medicine_task', 'Law_task'] * 10, | |
da_mode='close_set', | |
data_dirs={ | |
'No_robots': '/data/zql/datasets/no_robots', | |
'Law_task': '/data/zql/datasets/law_task', | |
'Medicine_task': '/data/zql/datasets/medicine_task', | |
}, | |
) | |
class TxtgenOnlineFeatAlignModel(OnlineFeatAlignModel): | |
def get_trained_params(self): # TODO: elastic fm only train a part of params | |
#qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'attention.attention.projection_query' in n or 'attention.attention.projection_key' in n or 'attention.attention.projection_value' in n or 'intermediate.dense' in n or 'output.dense' in n] | |
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters()] | |
return qkv_and_norm_params | |
def get_feature_hook(self) -> LayerActivation2: | |
return LayerActivation2(get_module(self.models_dict['main'], 'model.lm_head')) | |
def forward_to_get_task_loss(self, x, y): | |
losses = self.infer(x) | |
# print(losses) | |
return losses | |
def get_mmd_loss(self, f1, f2): | |
common_shape = min(f1.shape[0], f2.shape[0]) | |
f1 = f1.view(f1.shape[0], -1) | |
f2 = f2.view(f2.shape[0], -1) | |
f1 = f1[:common_shape,:] | |
f2 = f2[:common_shape,:] | |
return mmd_rbf(f1, f2) | |
def infer(self, x, *args, **kwargs): | |
return self.models_dict['main'](**x) | |
def get_accuracy(self, test_loader, *args, **kwargs): | |
acc = 0 | |
sample_num = 0 | |
tokenizer = getTokenizer() | |
self.to_eval_mode() | |
pred_txt = [] | |
true_txt = [] | |
res = [] | |
with torch.no_grad(): | |
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) | |
for batch_index, (x, _) in pbar: | |
if len(x) == 0: | |
continue | |
# if batch_index > 10: | |
# break | |
for k, v in x.items(): | |
if isinstance(v, torch.Tensor): | |
x[k] = v.to(self.device) | |
# input_ids = [] | |
inputlen = x['len'] | |
y = x['labels'] | |
x['labels'] = None | |
outputs = self.models_dict['main'].generate(x, pad_id=tokenizer.pad_token_id) | |
for i, op in enumerate(outputs): | |
op = op.tolist() | |
op = list(filter(lambda x: x != tokenizer.pad_token_id, op)) | |
txt = tokenizer.decode(op) | |
txt = txt.replace(tokenizer.pad_token, "") | |
res.append(txt) | |
txt = txt[inputlen[i]:] | |
pred_txt.append(nltk.word_tokenize(txt)) | |
for tp in y: | |
true_txt.append(nltk.word_tokenize(tokenizer.decode(tp).replace(tokenizer.pad_token, ''))) | |
# pred = F.softmax(output, dim=1).argmax(dim=1) | |
# correct = torch.eq(pred, y).sum().item() | |
# acc += correct | |
sample_num += len(y) | |
# pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' | |
# f'cur_batch_acc: {(correct / len(y)):.4f}') | |
json.dump(res, open("./gpt_generation.json", "w")) | |
smooth = SmoothingFunction() | |
score = 0. | |
for pred, true in zip(pred_txt, true_txt): | |
score += sentence_bleu([true], pred, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smooth.method1) | |
score /= sample_num | |
return score | |
da_alg = FeatAlignAlg | |
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup | |
#from new_impl.cv.model import ClsOnlineFeatAlignModel | |
da_model = TxtgenOnlineFeatAlignModel( | |
app_name, | |
'new_impl/nlp/gpt-neo/text_generation/results/gen_md_wo_fbs.py/20240113/999999-172009/models/md_best.pt', | |
device | |
) | |
da_alg_hyp = { | |
'Medicine_task': { | |
'train_batch_size': 2, | |
'val_batch_size': 1, | |
'num_workers': 2, | |
'optimizer': 'AdamW', | |
'optimizer_args': {'lr': 5e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, | |
'scheduler': '', | |
'scheduler_args': {}, | |
'num_iters': 1000, | |
'val_freq': 200, | |
'feat_align_loss_weight': 1.0, | |
}, | |
'Law_task': { | |
'train_batch_size': 2, | |
'val_batch_size': 1, | |
'num_workers': 2, | |
'optimizer': 'AdamW', | |
'optimizer_args': {'lr': 5e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, | |
'scheduler': '', | |
'scheduler_args': {}, | |
'num_iters': 1000, | |
'val_freq': 200, | |
'feat_align_loss_weight': 1.0, | |
}, | |
} | |
baseline_da( | |
app_name, | |
scenario, | |
da_alg, | |
da_alg_hyp, | |
da_model, | |
device, | |
__file__, | |
"results", | |
collate_fn=collate_fn | |
) |