Spaces:
Running
Running
from methods.elasticdnn.hugging_face.user_impl import HuggingFaceModelAPI | |
from utils.dl.common.model import LayerActivation, get_module | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
import tqdm | |
class BERTHuggingFaceModelAPI(HuggingFaceModelAPI): | |
def get_feature_hook(self, fm: nn.Module, device) -> LayerActivation: | |
return LayerActivation(get_module(fm, 'classifier'), True, device) | |
def get_task_head_params(self, fm: nn.Module): | |
head = get_module(fm, 'classifier') | |
return list(head.parameters()) | |
def get_qkv_proj_ff1_ff2_layer_names(self): | |
return [[f'bert.encoder.layer.{i}.attention.self.query', f'bert.encoder.layer.{i}.attention.self.key', f'bert.encoder.layer.{i}.attention.self.value', \ | |
f'bert.encoder.layer.{i}.attention.output.dense', \ | |
f'bert.encoder.layer.{i}.intermediate.dense', f'bert.encoder.layer.{i}.output.dense'] for i in range(12)] | |
def get_accuracy(self, fm: nn.Module, test_loader, device, *args, **kwargs): | |
acc = 0 | |
sample_num = 0 | |
fm.eval() | |
with torch.no_grad(): | |
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) | |
for batch_index, (x, y) in pbar: | |
for k, v in x.items(): | |
if isinstance(v, torch.Tensor): | |
x[k] = v.to(device) | |
y = y.to(device) | |
output = self.infer(fm, x) | |
pred = F.softmax(output, dim=1).argmax(dim=1) | |
# print(pred, y) | |
correct = torch.eq(pred, y).sum().item() | |
acc += correct | |
sample_num += len(y) | |
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' | |
f'cur_batch_acc: {(correct / len(y)):.4f}') | |
acc /= sample_num | |
return acc | |
def infer(self, fm: nn.Module, x, *args, **kwargs): | |
return fm(**x) | |
def forward_to_get_task_loss(self, fm: nn.Module, x, y, *args, **kwargs): | |
return F.cross_entropy(self.infer(fm, x), y) |