Spaces:
Running
Running
import sys | |
from utils.dl.common.env import set_random_seed | |
set_random_seed(1) | |
from typing import List | |
from data.dataloader import build_dataloader | |
from data import Scenario | |
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel | |
import torch | |
import sys | |
from torch import nn | |
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel | |
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg | |
from methods.elasticdnn.model.base import ElasticDNNUtil | |
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util | |
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util | |
from methods.elasticdnn.model.vit import ElasticViTUtil | |
from utils.common.file import ensure_dir | |
from utils.dl.common.model import LayerActivation, get_module, get_parameter | |
from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
from data import build_scenario | |
from utils.dl.common.loss import CrossEntropyLossSoft | |
import torch.nn.functional as F | |
from utils.dl.common.env import create_tbwriter | |
import os | |
from utils.common.log import logger | |
from utils.common.data_record import write_json | |
# from methods.shot.shot import OnlineShotModel | |
from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg | |
import tqdm | |
from methods.feat_align.mmd import mmd_rbf | |
from methods.base.alg import BaseAlg | |
import shutil | |
from methods.base.model import BaseModel | |
def elasticfm_da(apps_name: List[str], | |
scenarios: List[Scenario], | |
elasticfm_models: List[ElasticDNN_OnlineModel], | |
da_algs: List[BaseAlg], | |
da_alg_hyps: List[dict], | |
da_models: List[BaseModel], | |
device, | |
settings, | |
__entry_file__, | |
tag=None): | |
involve_fm = settings['involve_fm'] | |
tasks_name = apps_name | |
online_models = elasticfm_models | |
log_dir = get_res_save_dir(__entry_file__, tag=tag) | |
tb_writer = create_tbwriter(os.path.join(log_dir, 'tb_log'), False) | |
res = [] | |
global_avg_after_acc = 0. | |
global_iter = 0 | |
for domain_index, _ in enumerate(scenarios[0].target_domains_order): | |
avg_before_acc, avg_after_acc = 0., 0. | |
cur_res = {} | |
for task_name, online_model, scenario, da_alg, da_model, da_alg_hyp in zip(tasks_name, online_models, scenarios, da_algs, da_models, da_alg_hyps): | |
cur_target_domain_name = scenario.target_domains_order[scenario.cur_domain_index] | |
if cur_target_domain_name in da_alg_hyp: | |
da_alg_hyp = da_alg_hyp[cur_target_domain_name] | |
logger.info(f'use dataset-specific hyps') | |
online_model.set_sd_sparsity(da_alg_hyp['sd_sparsity']) | |
sd, unpruned_indexes_of_layers = online_model.generate_sd_by_target_samples(scenario.get_online_cur_domain_samples_for_training(da_alg_hyp['train_batch_size'])) | |
tmp_sd_path = os.path.join(log_dir, 'tmp_sd_model.pt') | |
torch.save({'main': sd}, tmp_sd_path) | |
if 'cls' not in task_name and 'pos' not in task_name and 'vqa' not in task_name: | |
da_model_args = [f'{task_name}/{domain_index}', | |
tmp_sd_path, | |
device, | |
scenario.num_classes] | |
else: | |
da_model_args = [f'{task_name}/{domain_index}', | |
tmp_sd_path, | |
device] | |
da_metrics, after_da_model = da_alg( | |
{'main': da_model(*da_model_args)}, | |
os.path.join(log_dir, f'{task_name}/{domain_index}') | |
).run(scenario, {_k: _v for _k, _v in da_alg_hyp.items() if _k != 'sd_sparsity'}) | |
os.remove(tmp_sd_path) | |
if domain_index > 0: | |
shutil.rmtree(os.path.join(log_dir, f'{task_name}/{domain_index}/backup_codes')) | |
online_model.sd_feedback_to_md(after_da_model['main'].models_dict['main'], unpruned_indexes_of_layers) | |
online_model.md_feedback_to_self_fm() | |
accs = da_metrics['accs'] | |
before_acc = accs[0]['acc'] | |
after_acc = accs[-1]['acc'] | |
avg_before_acc += before_acc | |
avg_after_acc += after_acc | |
for _acc in accs: | |
tb_writer.add_scalar(f'total_acc', _acc['acc'], _acc['iter'] + global_iter) # TODO: bug here | |
global_iter += _acc['iter'] + 1 | |
tb_writer.add_scalars(f'accs/{task_name}', dict(before=before_acc, after=after_acc), domain_index) | |
tb_writer.add_scalar(f'times/{task_name}', da_metrics['time'], domain_index) | |
scenario.next_domain() | |
logger.info(f"task: {task_name}, domain {domain_index}, acc: {before_acc:.4f} -> " | |
f"{after_acc:.4f} ({da_metrics['time']:.2f}s)") | |
cur_res[task_name] = da_metrics | |
if involve_fm: | |
for online_model in online_models: | |
online_model.aggregate_fms_to_self_fm([m.models_dict['fm'] for m in online_models]) | |
for online_model in online_models: | |
online_model.fm_feedback_to_md() | |
avg_before_acc /= len(tasks_name) | |
avg_after_acc /= len(tasks_name) | |
tb_writer.add_scalars(f'accs/apps_avg', dict(before=avg_before_acc, after=avg_after_acc), domain_index) | |
logger.info(f"--> domain {domain_index}, avg_acc: {avg_before_acc:.4f} -> " | |
f"{avg_after_acc:.4f}") | |
res += [cur_res] | |
global_avg_after_acc += avg_after_acc | |
write_json(os.path.join(log_dir, 'res.json'), res, backup=False) | |
global_avg_after_acc /= (domain_index + 1) | |
logger.info(f'-----> final metric: {global_avg_after_acc:.4f}') | |
write_json(os.path.join(log_dir, f'res_{global_avg_after_acc:.4f}.json'), res, backup=False) | |
def init_online_model(fm_models_dict_path, md_models_dict_path, task_name, __entry_file__): | |
fm_models = torch.load(fm_models_dict_path) | |
md_models = torch.load(md_models_dict_path) | |
online_models_dict_path = save_models_dict_for_init({ | |
'fm': fm_models['main'], | |
'md': md_models['main'], | |
'sd': None, | |
'indexes': md_models['indexes'], | |
'bn_stats': md_models['bn_stats'] | |
}, __entry_file__, task_name) | |
return online_models_dict_path | |