Spaces:
Running
Running
import sys | |
from utils.dl.common.env import set_random_seed | |
set_random_seed(1) | |
from typing import List | |
from data.dataloader import build_dataloader | |
from data import Scenario | |
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel | |
import torch | |
import sys | |
from torch import nn | |
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel | |
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg | |
from methods.elasticdnn.model.base import ElasticDNNUtil | |
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util | |
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util | |
from methods.elasticdnn.model.vit import ElasticViTUtil | |
from utils.common.file import ensure_dir | |
from utils.dl.common.model import LayerActivation, get_module, get_parameter | |
from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
from data import build_scenario | |
from utils.dl.common.loss import CrossEntropyLossSoft | |
import torch.nn.functional as F | |
from utils.dl.common.env import create_tbwriter | |
import os | |
import shutil | |
from utils.common.log import logger | |
from utils.common.data_record import write_json | |
# from methods.shot.shot import OnlineShotModel | |
from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg | |
import tqdm | |
from methods.feat_align.mmd import mmd_rbf | |
from methods.base.alg import BaseAlg | |
from methods.base.model import BaseModel | |
from copy import deepcopy | |
import time | |
def baseline_da(app_name: str, | |
scenario: Scenario, | |
da_alg: BaseAlg, | |
da_alg_hyp: dict, | |
da_model: BaseModel, | |
device, | |
__entry_file__, | |
tag=None): | |
# involve_fm = settings['involve_fm'] | |
task_name = app_name | |
# online_model = elasticfm_model | |
log_dir = get_res_save_dir(__entry_file__, tag=tag) | |
tb_writer = create_tbwriter(os.path.join(log_dir, 'tb_log'), False) | |
res = [] | |
global_avg_after_acc = 0. | |
global_iter = 0 | |
for domain_index, _ in enumerate(scenario.target_domains_order): | |
cur_target_domain_name = scenario.target_domains_order[scenario.cur_domain_index] | |
if cur_target_domain_name in da_alg_hyp: | |
da_alg_hyp = da_alg_hyp[cur_target_domain_name] | |
logger.info(f'use dataset-specific da_alg_hyp') | |
da_metrics, after_da_model = da_alg( | |
{'main': da_model}, | |
os.path.join(log_dir, f'{task_name}/{domain_index}') | |
).run(scenario, da_alg_hyp) | |
# os.remove(tmp_sd_path) | |
# 前面在当前域上训练,在这里压缩调优? | |
# print(da_model.models_dict['main']) | |
# 进行压缩 | |
reducing_width_ratio = 8 | |
samples = torch.rand(1, 3, 224, 224).to(device) | |
trained_fm_model = deepcopy(da_model.models_dict['main']) | |
fm_da_model = deepcopy(da_model) # 保存大模型 | |
lora_util = FMLoRA_ViT_Util() | |
lora_absorbed_fm_model = lora_util.absorb_lora_and_recover_net_structure(trained_fm_model, samples) | |
compressed_fm_model = FM_to_MD_ViT_Util().init_md_from_fm_by_reducing_width_with_perf_test(lora_absorbed_fm_model, reducing_width_ratio, samples) | |
da_model.models_dict['main'] = compressed_fm_model | |
# 进行调优?之前那个da_metrics是FM的结果吧,调优也能得到一个精度结果换成这个? | |
datasets_for_training = scenario.get_online_cur_domain_datasets_for_training() | |
train_dataset = datasets_for_training[cur_target_domain_name]['train'] | |
val_dataset = datasets_for_training[cur_target_domain_name]['val'] | |
datasets_for_inference = scenario.get_online_cur_domain_datasets_for_inference() | |
test_dataset = datasets_for_inference | |
train_loader = iter(build_dataloader(train_dataset, da_alg_hyp['train_batch_size'], da_alg_hyp['num_workers'], True, None)) | |
test_loader = build_dataloader(test_dataset, da_alg_hyp['val_batch_size'], da_alg_hyp['num_workers'], False, False) | |
for p in compressed_fm_model.parameters(): | |
p.requires_grad = True | |
da_model.to_train_mode() | |
# 'distill_optimizer': 'AdamW', | |
# 'distill_optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, | |
optimizer = torch.optim.__dict__['AdamW']([ | |
{'params': da_model.models_dict['main'].parameters(), **{'lr': 1e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01}} | |
]) | |
if da_alg_hyp['scheduler'] != '': | |
scheduler = torch.optim.lr_scheduler.__dict__[da_alg_hyp['scheduler']](optimizer, **da_alg_hyp['scheduler_args']) | |
else: | |
scheduler = None | |
pbar = tqdm.tqdm(range(da_alg_hyp['num_iters']), dynamic_ncols=True) | |
accs = [] | |
total_train_time = 0. | |
cur_acc = 0. | |
for iter_index in pbar: | |
cur_start_time = time.time() | |
da_model.to_train_mode() | |
fm_da_model.to_eval_mode() | |
x, y = next(train_loader) | |
if isinstance(x, dict): | |
for k, v in x.items(): | |
if isinstance(v, torch.Tensor): | |
x[k] = v.to(device) | |
y = y.to(device) | |
else: | |
x, y = x.to(device), y.to(device) | |
with torch.no_grad(): | |
fm_output = fm_da_model.infer(x) | |
md_output = da_model.infer(x) | |
distill_criterion = CrossEntropyLossSoft() | |
total_loss = distill_criterion(md_output, fm_output) | |
optimizer.zero_grad() | |
total_loss.backward() | |
optimizer.step() | |
if scheduler is not None: | |
scheduler.step() | |
total_train_time += time.time() - cur_start_time | |
if (iter_index + 1) % da_alg_hyp['val_freq'] == 0: | |
from data import split_dataset | |
cur_md = da_model.models_dict['main'] | |
md_for_test = deepcopy(da_model.models_dict['main']) | |
da_model.models_dict['main'] = md_for_test | |
cur_test_batch_dataset = split_dataset(test_dataset, da_alg_hyp['val_batch_size'], iter_index + 1)[0] | |
cur_test_batch_dataloader = build_dataloader(cur_test_batch_dataset, da_alg_hyp['train_batch_size'], da_alg_hyp['num_workers'], False, False) | |
da_model.to_eval_mode() | |
cur_acc = da_model.get_accuracy(cur_test_batch_dataloader) | |
accs += [{ | |
'iter': iter_index + 1, | |
'acc': cur_acc | |
}] | |
pbar.set_description(f'loss: {total_loss:.6f}, cur_acc: {cur_acc:.4f}') | |
time_usage = total_train_time | |
da_metrics = { | |
'accs': accs, | |
'time': time_usage | |
} | |
da_model = fm_da_model # 恢复大模型 | |
# 蒸馏结束 | |
if domain_index > 0: | |
shutil.rmtree(os.path.join(log_dir, f'{task_name}/{domain_index}/backup_codes')) | |
accs = da_metrics['accs'] | |
before_acc = accs[0]['acc'] | |
after_acc = accs[-1]['acc'] | |
tb_writer.add_scalars(f'accs/{task_name}', dict(before=before_acc, after=after_acc), domain_index) | |
tb_writer.add_scalar(f'times/{task_name}', da_metrics['time'], domain_index) | |
for _acc in accs: | |
tb_writer.add_scalar('total_acc', _acc['acc'], _acc['iter'] + global_iter) | |
global_iter += _acc['iter'] + 1 | |
scenario.next_domain() | |
logger.info(f"task: {task_name}, domain {domain_index}, acc: {before_acc:.4f} -> " | |
f"{after_acc:.4f} ({da_metrics['time']:.2f}s)") | |
global_avg_after_acc += after_acc | |
cur_res = da_metrics | |
res += [cur_res] | |
write_json(os.path.join(log_dir, 'res.json'), res, backup=False) | |
global_avg_after_acc /= (domain_index + 1) | |
logger.info(f'-----> final metric: {global_avg_after_acc:.4f}') | |
write_json(os.path.join(log_dir, f'res_{global_avg_after_acc:.4f}.json'), res, backup=False) | |