Spaces:
Running
Running
import sys | |
from utils.dl.common.env import set_random_seed | |
set_random_seed(1) | |
from typing import List | |
from data.dataloader import build_dataloader | |
from data import Scenario | |
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel | |
import torch | |
import sys | |
from torch import nn | |
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel | |
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg | |
from methods.elasticdnn.model.base import ElasticDNNUtil | |
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util | |
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util | |
from methods.elasticdnn.model.vit import ElasticViTUtil | |
from utils.common.file import ensure_dir | |
from utils.dl.common.model import LayerActivation, get_module, get_parameter | |
from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
from data import build_scenario | |
from utils.dl.common.loss import CrossEntropyLossSoft | |
import torch.nn.functional as F | |
from utils.dl.common.env import create_tbwriter | |
import os | |
import shutil | |
from utils.common.log import logger | |
from utils.common.data_record import write_json | |
# from methods.shot.shot import OnlineShotModel | |
from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg | |
import tqdm | |
from methods.feat_align.mmd import mmd_rbf | |
from methods.base.alg import BaseAlg | |
from methods.base.model import BaseModel | |
def baseline_da(app_name: str, | |
scenario: Scenario, | |
da_alg: BaseAlg, | |
da_alg_hyp: dict, | |
da_model: BaseModel, | |
device, | |
__entry_file__, | |
tag=None): | |
# involve_fm = settings['involve_fm'] | |
task_name = app_name | |
# online_model = elasticfm_model | |
log_dir = get_res_save_dir(__entry_file__, tag=tag) | |
tb_writer = create_tbwriter(os.path.join(log_dir, 'tb_log'), False) | |
res = [] | |
global_avg_after_acc = 0. | |
global_iter = 0 | |
for domain_index, _ in enumerate(scenario.target_domains_order): | |
cur_target_domain_name = scenario.target_domains_order[scenario.cur_domain_index] | |
if cur_target_domain_name in da_alg_hyp: | |
da_alg_hyp = da_alg_hyp[cur_target_domain_name] | |
logger.info(f'use dataset-specific hyps') | |
# tmp_sd_path = os.path.join(log_dir, 'tmp_sd_model.pt') | |
# torch.save({'main': sd}, tmp_sd_path) | |
# if task_name != 'cls': | |
# da_model_args = [f'{task_name}/{domain_index}', | |
# tmp_sd_path, | |
# device, | |
# scenario.num_classes] | |
# else: | |
# da_model_args = [f'{task_name}/{domain_index}', | |
# tmp_sd_path, | |
# device] | |
# cur_da_model = da_model(*da_model_args) | |
da_metrics, after_da_model = da_alg( | |
{'main': da_model}, | |
os.path.join(log_dir, f'{task_name}/{domain_index}') | |
).run(scenario, da_alg_hyp) | |
# os.remove(tmp_sd_path) | |
if domain_index > 0: | |
shutil.rmtree(os.path.join(log_dir, f'{task_name}/{domain_index}/backup_codes')) | |
accs = da_metrics['accs'] | |
before_acc = accs[0]['acc'] | |
after_acc = accs[-1]['acc'] | |
tb_writer.add_scalars(f'accs/{task_name}', dict(before=before_acc, after=after_acc), domain_index) | |
tb_writer.add_scalar(f'times/{task_name}', da_metrics['time'], domain_index) | |
for _acc in accs: | |
tb_writer.add_scalar('total_acc', _acc['acc'], _acc['iter'] + global_iter) | |
global_iter += _acc['iter'] + 1 | |
scenario.next_domain() | |
logger.info(f"task: {task_name}, domain {domain_index}, acc: {before_acc:.4f} -> " | |
f"{after_acc:.4f} ({da_metrics['time']:.2f}s)") | |
global_avg_after_acc += after_acc | |
cur_res = da_metrics | |
res += [cur_res] | |
write_json(os.path.join(log_dir, 'res.json'), res, backup=False) | |
global_avg_after_acc /= (domain_index + 1) | |
logger.info(f'-----> final metric: {global_avg_after_acc:.4f}') | |
write_json(os.path.join(log_dir, f'res_{global_avg_after_acc:.4f}.json'), res, backup=False) | |