Spaces:
Running
Running
import torch | |
from methods.elasticdnn.api.model import ElasticDNN_OfflineVQAFMModel, ElasticDNN_OfflineVQAMDModel | |
from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg | |
from methods.elasticdnn.model.base import ElasticDNNUtil | |
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
from methods.elasticdnn.pipeline.offline.fm_lora.vilt import FMLoRA_Vilt_Util | |
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util | |
from methods.elasticdnn.model.vit import ElasticViTUtil | |
from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module | |
from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
from data import build_scenario | |
from utils.common.log import logger | |
import torch.nn.functional as F | |
import sys | |
class ElasticDNN_Vilt_OfflineVQAFMModel(ElasticDNN_OfflineVQAFMModel): | |
def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): | |
# return FM_to_MD_ViT_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], | |
# reducing_width_ratio, samples) | |
raise NotImplementedError | |
def get_feature_hook(self) -> LayerActivation: | |
return LayerActivation(get_module(self.models_dict['main'], 'classifier.3'), True, self.device) | |
def get_elastic_dnn_util(self) -> ElasticDNNUtil: | |
raise NotImplementedError | |
def forward_to_get_task_loss(self, x, y, *args, **kwargs): | |
self.to_train_mode() | |
# print(x['input_ids'].size(), x['pixel_values'].size(), ) | |
o = self.infer(x).logits | |
# print(o.size(), y.size(), o, y) | |
return F.binary_cross_entropy_with_logits(o, y) * y.shape[1] | |
def get_lora_util(self) -> FMLoRA_Util: | |
return FMLoRA_Vilt_Util() | |
def get_task_head_params(self): | |
head = get_module(self.models_dict['main'], 'classifier') | |
params_name = {k for k, v in head.named_parameters()} | |
logger.info(f'task head params: {params_name}') | |
return list(head.parameters()) | |
class ElasticDNN_Vilt_OfflineVQAMDModel(ElasticDNN_OfflineVQAMDModel): | |
def get_feature_hook(self) -> LayerActivation: | |
return LayerActivation(get_module(self.models_dict['main'], 'classifier.3'), True, self.device) | |
def forward_to_get_task_loss(self, x, y, *args, **kwargs): | |
self.to_train_mode() | |
o = self.infer(x) | |
return nn.functional.binary_cross_entropy_with_logits(o, y) * y.shape[1] | |
if __name__ == '__main__': | |
from utils.dl.common.env import set_random_seed | |
set_random_seed(1) | |
scenario = build_scenario( | |
source_datasets_name=['VQAv2_split1'], | |
target_datasets_order=['VQAv2_split1_c'] * 1, # TODO | |
da_mode='close_set', | |
data_dirs={ | |
'VQAv2_split1': '/data/zql/datasets/vqav2', | |
'VQAv2_split1_c': '/data/zql/datasets/vqav2' | |
}, | |
) | |
# 2. init model | |
device = 'cuda' | |
from dnns.vilt import vilt_b_32 | |
model = vilt_b_32(num_classes=scenario.num_classes) | |
fm_models_dict_path = save_models_dict_for_init({ | |
'main': model | |
}, __file__, 'fm_vilt') | |
fm_model = ElasticDNN_Vilt_OfflineVQAFMModel('fm', fm_models_dict_path, device) | |
# 3. init alg | |
models = { | |
'fm': fm_model | |
} | |
fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__, sys.argv[0])) | |
sample_dataset = list(scenario.get_offline_datasets().values())[0]['train'] | |
sample = sample_dataset[0][0] | |
for k, v in sample.items(): | |
sample[k] = v.unsqueeze(0) | |
# 4. run alg | |
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup | |
fm_lora_alg.run(scenario, hyps={ | |
'launch_tbboard': False, | |
'samples_size': sample, | |
'ab_r': 8, | |
'train_batch_size': 64, | |
'val_batch_size': 512, | |
'num_workers': 16, | |
'optimizer': 'AdamW', | |
'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999]}, | |
'scheduler': 'LambdaLR', | |
'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 310000)}, | |
'num_iters': 320000, | |
'val_freq': 400, | |
# 'fm_lora_ckpt_path': 'experiments/elasticdnn/vit_b_16/offline/fm_lora/cls/results/cls.py/20230607/999995-234355-TokenClsial/models/fm_best.pt' | |
}) |