Spaces:
Runtime error
Runtime error
File size: 23,618 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple
try:
import lap
except ImportError:
lap = None
import numpy as np
import torch
from addict import Dict
from mmengine.structures import InstanceData
from mmdet.registry import MODELS
from mmdet.structures import DetDataSample
from mmdet.structures.bbox import (bbox_cxcyah_to_xyxy, bbox_overlaps,
bbox_xyxy_to_cxcyah)
from .sort_tracker import SORTTracker
@MODELS.register_module()
class OCSORTTracker(SORTTracker):
"""Tracker for OC-SORT.
Args:
motion (dict): Configuration of motion. Defaults to None.
obj_score_thrs (float): Detection score threshold for matching objects.
Defaults to 0.3.
init_track_thr (float): Detection score threshold for initializing a
new tracklet. Defaults to 0.7.
weight_iou_with_det_scores (bool): Whether using detection scores to
weight IOU which is used for matching. Defaults to True.
match_iou_thr (float): IOU distance threshold for matching between two
frames. Defaults to 0.3.
num_tentatives (int, optional): Number of continuous frames to confirm
a track. Defaults to 3.
vel_consist_weight (float): Weight of the velocity consistency term in
association (OCM term in the paper).
vel_delta_t (int): The difference of time step for calculating of the
velocity direction of tracklets.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
motion: Optional[dict] = None,
obj_score_thr: float = 0.3,
init_track_thr: float = 0.7,
weight_iou_with_det_scores: bool = True,
match_iou_thr: float = 0.3,
num_tentatives: int = 3,
vel_consist_weight: float = 0.2,
vel_delta_t: int = 3,
**kwargs):
if lap is None:
raise RuntimeError('lap is not installed,\
please install it by: pip install lap')
super().__init__(motion=motion, **kwargs)
self.obj_score_thr = obj_score_thr
self.init_track_thr = init_track_thr
self.weight_iou_with_det_scores = weight_iou_with_det_scores
self.match_iou_thr = match_iou_thr
self.vel_consist_weight = vel_consist_weight
self.vel_delta_t = vel_delta_t
self.num_tentatives = num_tentatives
@property
def unconfirmed_ids(self):
"""Unconfirmed ids in the tracker."""
ids = [id for id, track in self.tracks.items() if track.tentative]
return ids
def init_track(self, id: int, obj: Tuple[torch.Tensor]):
"""Initialize a track."""
super().init_track(id, obj)
if self.tracks[id].frame_ids[-1] == 0:
self.tracks[id].tentative = False
else:
self.tracks[id].tentative = True
bbox = bbox_xyxy_to_cxcyah(self.tracks[id].bboxes[-1]) # size = (1, 4)
assert bbox.ndim == 2 and bbox.shape[0] == 1
bbox = bbox.squeeze(0).cpu().numpy()
self.tracks[id].mean, self.tracks[id].covariance = self.kf.initiate(
bbox)
# track.obs maintains the history associated detections to this track
self.tracks[id].obs = []
bbox_id = self.memo_items.index('bboxes')
self.tracks[id].obs.append(obj[bbox_id])
# a placefolder to save mean/covariance before losing tracking it
# parameters to save: mean, covariance, measurement
self.tracks[id].tracked = True
self.tracks[id].saved_attr = Dict()
self.tracks[id].velocity = torch.tensor(
(-1, -1)).to(obj[bbox_id].device) # placeholder
def update_track(self, id: int, obj: Tuple[torch.Tensor]):
"""Update a track."""
super().update_track(id, obj)
if self.tracks[id].tentative:
if len(self.tracks[id]['bboxes']) >= self.num_tentatives:
self.tracks[id].tentative = False
bbox = bbox_xyxy_to_cxcyah(self.tracks[id].bboxes[-1]) # size = (1, 4)
assert bbox.ndim == 2 and bbox.shape[0] == 1
bbox = bbox.squeeze(0).cpu().numpy()
self.tracks[id].mean, self.tracks[id].covariance = self.kf.update(
self.tracks[id].mean, self.tracks[id].covariance, bbox)
self.tracks[id].tracked = True
bbox_id = self.memo_items.index('bboxes')
self.tracks[id].obs.append(obj[bbox_id])
bbox1 = self.k_step_observation(self.tracks[id])
bbox2 = obj[bbox_id]
self.tracks[id].velocity = self.vel_direction(bbox1, bbox2).to(
obj[bbox_id].device)
def vel_direction(self, bbox1: torch.Tensor, bbox2: torch.Tensor):
"""Estimate the direction vector between two boxes."""
if bbox1.sum() < 0 or bbox2.sum() < 0:
return torch.tensor((-1, -1))
cx1, cy1 = (bbox1[0] + bbox1[2]) / 2.0, (bbox1[1] + bbox1[3]) / 2.0
cx2, cy2 = (bbox2[0] + bbox2[2]) / 2.0, (bbox2[1] + bbox2[3]) / 2.0
speed = torch.tensor([cy2 - cy1, cx2 - cx1])
norm = torch.sqrt((speed[0])**2 + (speed[1])**2) + 1e-6
return speed / norm
def vel_direction_batch(self, bboxes1: torch.Tensor,
bboxes2: torch.Tensor):
"""Estimate the direction vector given two batches of boxes."""
cx1, cy1 = (bboxes1[:, 0] + bboxes1[:, 2]) / 2.0, (bboxes1[:, 1] +
bboxes1[:, 3]) / 2.0
cx2, cy2 = (bboxes2[:, 0] + bboxes2[:, 2]) / 2.0, (bboxes2[:, 1] +
bboxes2[:, 3]) / 2.0
speed_diff_y = cy2[None, :] - cy1[:, None]
speed_diff_x = cx2[None, :] - cx1[:, None]
speed = torch.cat((speed_diff_y[..., None], speed_diff_x[..., None]),
dim=-1)
norm = torch.sqrt((speed[:, :, 0])**2 + (speed[:, :, 1])**2) + 1e-6
speed[:, :, 0] /= norm
speed[:, :, 1] /= norm
return speed
def k_step_observation(self, track: Dict):
"""return the observation k step away before."""
obs_seqs = track.obs
num_obs = len(obs_seqs)
if num_obs == 0:
return torch.tensor((-1, -1, -1, -1)).to(track.obs[0].device)
elif num_obs > self.vel_delta_t:
if obs_seqs[num_obs - 1 - self.vel_delta_t] is not None:
return obs_seqs[num_obs - 1 - self.vel_delta_t]
else:
return self.last_obs(track)
else:
return self.last_obs(track)
def ocm_assign_ids(self,
ids: List[int],
det_bboxes: torch.Tensor,
det_labels: torch.Tensor,
det_scores: torch.Tensor,
weight_iou_with_det_scores: Optional[bool] = False,
match_iou_thr: Optional[float] = 0.5):
"""Apply Observation-Centric Momentum (OCM) to assign ids.
OCM adds movement direction consistency into the association cost
matrix. This term requires no additional assumption but from the
same linear motion assumption as the canonical Kalman Filter in SORT.
Args:
ids (list[int]): Tracking ids.
det_bboxes (Tensor): of shape (N, 4)
det_labels (Tensor): of shape (N,)
det_scores (Tensor): of shape (N,)
weight_iou_with_det_scores (bool, optional): Whether using
detection scores to weight IOU which is used for matching.
Defaults to False.
match_iou_thr (float, optional): Matching threshold.
Defaults to 0.5.
Returns:
tuple(int): The assigning ids.
OC-SORT uses velocity consistency besides IoU for association
"""
# get track_bboxes
track_bboxes = np.zeros((0, 4))
for id in ids:
track_bboxes = np.concatenate(
(track_bboxes, self.tracks[id].mean[:4][None]), axis=0)
track_bboxes = torch.from_numpy(track_bboxes).to(det_bboxes)
track_bboxes = bbox_cxcyah_to_xyxy(track_bboxes)
# compute distance
ious = bbox_overlaps(track_bboxes, det_bboxes)
if weight_iou_with_det_scores:
ious *= det_scores
# support multi-class association
track_labels = torch.tensor([
self.tracks[id]['labels'][-1] for id in ids
]).to(det_bboxes.device)
cate_match = det_labels[None, :] == track_labels[:, None]
# to avoid det and track of different categories are matched
cate_cost = (1 - cate_match.int()) * 1e6
dists = (1 - ious + cate_cost).cpu().numpy()
if len(ids) > 0 and len(det_bboxes) > 0:
track_velocities = torch.stack(
[self.tracks[id].velocity for id in ids]).to(det_bboxes.device)
k_step_observations = torch.stack([
self.k_step_observation(self.tracks[id]) for id in ids
]).to(det_bboxes.device)
# valid1: if the track has previous observations to estimate speed
# valid2: if the associated observation k steps ago is a detection
valid1 = track_velocities.sum(dim=1) != -2
valid2 = k_step_observations.sum(dim=1) != -4
valid = valid1 & valid2
vel_to_match = self.vel_direction_batch(k_step_observations,
det_bboxes)
track_velocities = track_velocities[:, None, :].repeat(
1, det_bboxes.shape[0], 1)
angle_cos = (vel_to_match * track_velocities).sum(dim=-1)
angle_cos = torch.clamp(angle_cos, min=-1, max=1)
angle = torch.acos(angle_cos) # [0, pi]
norm_angle = (angle - np.pi / 2.) / np.pi # [-0.5, 0.5]
valid_matrix = valid[:, None].int().repeat(1, det_bboxes.shape[0])
# set non-valid entries 0
valid_norm_angle = norm_angle * valid_matrix
dists += valid_norm_angle.cpu().numpy() * self.vel_consist_weight
# bipartite match
if dists.size > 0:
cost, row, col = lap.lapjv(
dists, extend_cost=True, cost_limit=1 - match_iou_thr)
else:
row = np.zeros(len(ids)).astype(np.int32) - 1
col = np.zeros(len(det_bboxes)).astype(np.int32) - 1
return row, col
def last_obs(self, track: Dict):
"""extract the last associated observation."""
for bbox in track.obs[::-1]:
if bbox is not None:
return bbox
def ocr_assign_ids(self,
track_obs: torch.Tensor,
last_track_labels: torch.Tensor,
det_bboxes: torch.Tensor,
det_labels: torch.Tensor,
det_scores: torch.Tensor,
weight_iou_with_det_scores: Optional[bool] = False,
match_iou_thr: Optional[float] = 0.5):
"""association for Observation-Centric Recovery.
As try to recover tracks from being lost whose estimated velocity is
out- to-date, we use IoU-only matching strategy.
Args:
track_obs (Tensor): the list of historical associated
detections of tracks
det_bboxes (Tensor): of shape (N, 5), unmatched detections
det_labels (Tensor): of shape (N,)
det_scores (Tensor): of shape (N,)
weight_iou_with_det_scores (bool, optional): Whether using
detection scores to weight IOU which is used for matching.
Defaults to False.
match_iou_thr (float, optional): Matching threshold.
Defaults to 0.5.
Returns:
tuple(int): The assigning ids.
"""
# compute distance
ious = bbox_overlaps(track_obs, det_bboxes)
if weight_iou_with_det_scores:
ious *= det_scores
# support multi-class association
cate_match = det_labels[None, :] == last_track_labels[:, None]
# to avoid det and track of different categories are matched
cate_cost = (1 - cate_match.int()) * 1e6
dists = (1 - ious + cate_cost).cpu().numpy()
# bipartite match
if dists.size > 0:
cost, row, col = lap.lapjv(
dists, extend_cost=True, cost_limit=1 - match_iou_thr)
else:
row = np.zeros(len(track_obs)).astype(np.int32) - 1
col = np.zeros(len(det_bboxes)).astype(np.int32) - 1
return row, col
def online_smooth(self, track: Dict, obj: torch.Tensor):
"""Once a track is recovered from being lost, online smooth its
parameters to fix the error accumulated during being lost.
NOTE: you can use different virtual trajectory generation
strategies, we adopt the naive linear interpolation as default
"""
last_match_bbox = self.last_obs(track)
new_match_bbox = obj
unmatch_len = 0
for bbox in track.obs[::-1]:
if bbox is None:
unmatch_len += 1
else:
break
bbox_shift_per_step = (new_match_bbox - last_match_bbox) / (
unmatch_len + 1)
track.mean = track.saved_attr.mean
track.covariance = track.saved_attr.covariance
for i in range(unmatch_len):
virtual_bbox = last_match_bbox + (i + 1) * bbox_shift_per_step
virtual_bbox = bbox_xyxy_to_cxcyah(virtual_bbox[None, :])
virtual_bbox = virtual_bbox.squeeze(0).cpu().numpy()
track.mean, track.covariance = self.kf.update(
track.mean, track.covariance, virtual_bbox)
def track(self, data_sample: DetDataSample, **kwargs) -> InstanceData:
"""Tracking forward function.
NOTE: this implementation is slightly different from the original
OC-SORT implementation (https://github.com/noahcao/OC_SORT)that we
do association between detections and tentative/non-tentative tracks
independently while the original implementation combines them together.
Args:
data_sample (:obj:`DetDataSample`): The data sample.
It includes information such as `pred_instances`.
Returns:
:obj:`InstanceData`: Tracking results of the input images.
Each InstanceData usually contains ``bboxes``, ``labels``,
``scores`` and ``instances_id``.
"""
metainfo = data_sample.metainfo
bboxes = data_sample.pred_instances.bboxes
labels = data_sample.pred_instances.labels
scores = data_sample.pred_instances.scores
frame_id = metainfo.get('frame_id', -1)
if frame_id == 0:
self.reset()
if not hasattr(self, 'kf'):
self.kf = self.motion
if self.empty or bboxes.size(0) == 0:
valid_inds = scores > self.init_track_thr
scores = scores[valid_inds]
bboxes = bboxes[valid_inds]
labels = labels[valid_inds]
num_new_tracks = bboxes.size(0)
ids = torch.arange(self.num_tracks,
self.num_tracks + num_new_tracks).to(labels)
self.num_tracks += num_new_tracks
else:
# 0. init
ids = torch.full((bboxes.size(0), ),
-1,
dtype=labels.dtype,
device=labels.device)
# get the detection bboxes for the first association
det_inds = scores > self.obj_score_thr
det_bboxes = bboxes[det_inds]
det_labels = labels[det_inds]
det_scores = scores[det_inds]
det_ids = ids[det_inds]
# 1. predict by Kalman Filter
for id in self.confirmed_ids:
# track is lost in previous frame
if self.tracks[id].frame_ids[-1] != frame_id - 1:
self.tracks[id].mean[7] = 0
if self.tracks[id].tracked:
self.tracks[id].saved_attr.mean = self.tracks[id].mean
self.tracks[id].saved_attr.covariance = self.tracks[
id].covariance
(self.tracks[id].mean,
self.tracks[id].covariance) = self.kf.predict(
self.tracks[id].mean, self.tracks[id].covariance)
# 2. match detections and tracks' predicted locations
match_track_inds, raw_match_det_inds = self.ocm_assign_ids(
self.confirmed_ids, det_bboxes, det_labels, det_scores,
self.weight_iou_with_det_scores, self.match_iou_thr)
# '-1' mean a detection box is not matched with tracklets in
# previous frame
valid = raw_match_det_inds > -1
det_ids[valid] = torch.tensor(
self.confirmed_ids)[raw_match_det_inds[valid]].to(labels)
match_det_bboxes = det_bboxes[valid]
match_det_labels = det_labels[valid]
match_det_scores = det_scores[valid]
match_det_ids = det_ids[valid]
assert (match_det_ids > -1).all()
# unmatched tracks and detections
unmatch_det_bboxes = det_bboxes[~valid]
unmatch_det_labels = det_labels[~valid]
unmatch_det_scores = det_scores[~valid]
unmatch_det_ids = det_ids[~valid]
assert (unmatch_det_ids == -1).all()
# 3. use unmatched detection bboxes from the first match to match
# the unconfirmed tracks
(tentative_match_track_inds,
tentative_match_det_inds) = self.ocm_assign_ids(
self.unconfirmed_ids, unmatch_det_bboxes, unmatch_det_labels,
unmatch_det_scores, self.weight_iou_with_det_scores,
self.match_iou_thr)
valid = tentative_match_det_inds > -1
unmatch_det_ids[valid] = torch.tensor(self.unconfirmed_ids)[
tentative_match_det_inds[valid]].to(labels)
match_det_bboxes = torch.cat(
(match_det_bboxes, unmatch_det_bboxes[valid]), dim=0)
match_det_labels = torch.cat(
(match_det_labels, unmatch_det_labels[valid]), dim=0)
match_det_scores = torch.cat(
(match_det_scores, unmatch_det_scores[valid]), dim=0)
match_det_ids = torch.cat((match_det_ids, unmatch_det_ids[valid]),
dim=0)
assert (match_det_ids > -1).all()
unmatch_det_bboxes = unmatch_det_bboxes[~valid]
unmatch_det_labels = unmatch_det_labels[~valid]
unmatch_det_scores = unmatch_det_scores[~valid]
unmatch_det_ids = unmatch_det_ids[~valid]
assert (unmatch_det_ids == -1).all()
all_track_ids = [id for id, _ in self.tracks.items()]
unmatched_track_inds = torch.tensor(
[ind for ind in all_track_ids if ind not in match_det_ids])
if len(unmatched_track_inds) > 0:
# 4. still some tracks not associated yet, perform OCR
last_observations = []
for id in unmatched_track_inds:
last_box = self.last_obs(self.tracks[id.item()])
last_observations.append(last_box)
last_observations = torch.stack(last_observations)
last_track_labels = torch.tensor([
self.tracks[id.item()]['labels'][-1]
for id in unmatched_track_inds
]).to(det_bboxes.device)
remain_det_ids = torch.full((unmatch_det_bboxes.size(0), ),
-1,
dtype=labels.dtype,
device=labels.device)
_, ocr_match_det_inds = self.ocr_assign_ids(
last_observations, last_track_labels, unmatch_det_bboxes,
unmatch_det_labels, unmatch_det_scores,
self.weight_iou_with_det_scores, self.match_iou_thr)
valid = ocr_match_det_inds > -1
remain_det_ids[valid] = unmatched_track_inds.clone()[
ocr_match_det_inds[valid]].to(labels)
ocr_match_det_bboxes = unmatch_det_bboxes[valid]
ocr_match_det_labels = unmatch_det_labels[valid]
ocr_match_det_scores = unmatch_det_scores[valid]
ocr_match_det_ids = remain_det_ids[valid]
assert (ocr_match_det_ids > -1).all()
ocr_unmatch_det_bboxes = unmatch_det_bboxes[~valid]
ocr_unmatch_det_labels = unmatch_det_labels[~valid]
ocr_unmatch_det_scores = unmatch_det_scores[~valid]
ocr_unmatch_det_ids = remain_det_ids[~valid]
assert (ocr_unmatch_det_ids == -1).all()
unmatch_det_bboxes = ocr_unmatch_det_bboxes
unmatch_det_labels = ocr_unmatch_det_labels
unmatch_det_scores = ocr_unmatch_det_scores
unmatch_det_ids = ocr_unmatch_det_ids
match_det_bboxes = torch.cat(
(match_det_bboxes, ocr_match_det_bboxes), dim=0)
match_det_labels = torch.cat(
(match_det_labels, ocr_match_det_labels), dim=0)
match_det_scores = torch.cat(
(match_det_scores, ocr_match_det_scores), dim=0)
match_det_ids = torch.cat((match_det_ids, ocr_match_det_ids),
dim=0)
# 5. summarize the track results
for i in range(len(match_det_ids)):
det_bbox = match_det_bboxes[i]
track_id = match_det_ids[i].item()
if not self.tracks[track_id].tracked:
# the track is lost before this step
self.online_smooth(self.tracks[track_id], det_bbox)
for track_id in all_track_ids:
if track_id not in match_det_ids:
self.tracks[track_id].tracked = False
self.tracks[track_id].obs.append(None)
bboxes = torch.cat((match_det_bboxes, unmatch_det_bboxes), dim=0)
labels = torch.cat((match_det_labels, unmatch_det_labels), dim=0)
scores = torch.cat((match_det_scores, unmatch_det_scores), dim=0)
ids = torch.cat((match_det_ids, unmatch_det_ids), dim=0)
# 6. assign new ids
new_track_inds = ids == -1
ids[new_track_inds] = torch.arange(
self.num_tracks,
self.num_tracks + new_track_inds.sum()).to(labels)
self.num_tracks += new_track_inds.sum()
self.update(
ids=ids,
bboxes=bboxes,
labels=labels,
scores=scores,
frame_ids=frame_id)
# update pred_track_instances
pred_track_instances = InstanceData()
pred_track_instances.bboxes = bboxes
pred_track_instances.labels = labels
pred_track_instances.scores = scores
pred_track_instances.instances_id = ids
return pred_track_instances
|