AsianMOM / app.py
Kuberwastaken's picture
gr.image was right after all
b9e0d3e
raw
history blame
5.75 kB
import os
import gradio as gr
import torch
import cv2
from PIL import Image
import numpy as np
from transformers import pipeline, AutoProcessor, AutoModelForVision2Seq
from transformers import AutoModelForCausalLM, AutoTokenizer
import time
from transformers import BlipProcessor, BlipForConditionalGeneration
# Set environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def initialize_vision_model():
# Using BLIP for image captioning - lightweight but effective
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
return {
"processor": processor,
"model": model
}
def analyze_image(image, vision_components):
processor = vision_components["processor"]
model = vision_components["model"]
# Convert to RGB if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
inputs = processor(image, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, max_length=30)
caption = processor.decode(outputs[0], skip_special_tokens=True)
return caption
def initialize_llm():
model_id = "meta-llama/Llama-3.2-1B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
)
return {
"model": model,
"tokenizer": tokenizer
}
def generate_roast(caption, llm_components):
model = llm_components["model"]
tokenizer = llm_components["tokenizer"]
prompt = f"""[INST] You are AsianMOM, a stereotypical Asian mother who always has high expectations. \nYou just observed your child doing this: \"{caption}\"\n \nRespond with a short, humorous roast (maximum 2-3 sentences) in the style of a stereotypical Asian mother. \nInclude at least one of these elements:\n- Comparison to more successful relatives/cousins\n- High expectations about academic success\n- Mild threats about using slippers\n- Questioning life choices\n- Asking when they'll get married or have kids\n- Commenting on appearance\n- Saying \"back in my day\" and describing hardship\n\nBe funny but not hurtful. Keep it brief. [/INST]"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=300,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the response part, not the prompt
response = response.split("[/INST]")[1].strip()
return response
def initialize_tts_model():
tts_pipeline = pipeline(
"text-to-speech",
model="parler-tts/parler-tts-mini-expresso"
)
return tts_pipeline
def text_to_speech(text, tts_pipeline):
# Additional prompt to guide the voice style
styled_text = f"[[voice:female_mature]] [[speed:0.9]] [[precision:0.8]] {text}"
speech = tts_pipeline(styled_text)
return (speech["sampling_rate"], speech["audio"])
def process_frame(image, vision_components, llm_components, tts_pipeline):
# Step 1: Analyze what's in the image
caption = analyze_image(image, vision_components)
# Step 2: Generate roast based on the caption
roast = generate_roast(caption, llm_components)
# Step 3: Convert roast to speech
audio = text_to_speech(roast, tts_pipeline)
return caption, roast, audio
def setup_processing_chain(video_feed, analysis_output, roast_output, audio_output):
# Initialize all models
vision_components = initialize_vision_model()
llm_components = initialize_llm()
tts_pipeline = initialize_tts_model()
last_process_time = time.time() - 10 # Initialize with an offset
processing_interval = 5 # Process every 5 seconds
def process_webcam(image):
nonlocal last_process_time
current_time = time.time()
if current_time - last_process_time >= processing_interval and image is not None:
last_process_time = current_time
caption, roast, audio = process_frame(
image,
vision_components,
llm_components,
tts_pipeline
)
return image, caption, roast, audio
# Return None for outputs that shouldn't update
return image, None, None, None
video_feed.change(
process_webcam,
inputs=[video_feed],
outputs=[video_feed, analysis_output, roast_output, audio_output]
)
def create_app():
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# AsianMOM: Asian Mother Observer & Mocker")
gr.Markdown("### Camera captures what you're doing and your Asian mom responds appropriately")
with gr.Row():
with gr.Column():
video_feed = gr.Image(webcam=True, streaming=True, label="Camera Feed")
with gr.Column():
analysis_output = gr.Textbox(label="What AsianMOM Sees", lines=2)
roast_output = gr.Textbox(label="AsianMOM's Thoughts", lines=4)
audio_output = gr.Audio(label="AsianMOM Says", autoplay=True)
# Setup the processing chain
setup_processing_chain(video_feed, analysis_output, roast_output, audio_output)
return app
if __name__ == "__main__":
app = create_app()
app.launch()