Spaces:
Sleeping
Sleeping
File size: 13,891 Bytes
e94ed44 86892b5 c42af7b e94ed44 8c1e484 2515529 e94ed44 5dfc9ca e94ed44 e8b90e6 e94ed44 e8b90e6 e94ed44 e8b90e6 e94ed44 e8b90e6 e94ed44 bba8dbb e8b90e6 bba8dbb e8b90e6 86892b5 e8b90e6 e94ed44 c42af7b e94ed44 c42af7b e94ed44 c42af7b e94ed44 bba8dbb 86892b5 bba8dbb e94ed44 5dfc9ca 86892b5 e94ed44 86892b5 5dfc9ca e94ed44 86892b5 5dfc9ca 86892b5 f599acb 86892b5 e94ed44 86892b5 e94ed44 86892b5 e94ed44 86892b5 e94ed44 86892b5 e94ed44 aa4ff87 6e0e43b 86892b5 6e0e43b 86892b5 e94ed44 86892b5 6e0e43b 86892b5 e94ed44 86892b5 2515529 86892b5 2515529 86892b5 2515529 86892b5 2515529 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import os
import gradio as gr
import torch
import cv2
from PIL import Image
import numpy as np
from transformers import AutoProcessor, AutoModelForVision2Seq
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import time
import nltk
import io
import sys
import pkg_resources
from transformers import BlipProcessor, BlipForConditionalGeneration
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoFeatureExtractor, set_seed
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from string import punctuation
import re
# Set environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def initialize_vision_model():
model_id = "HuggingFaceTB/SmolVLM-500M-Instruct"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
return {
"processor": processor,
"model": model,
"device": device
}
def analyze_image(image, vision_components, instruction="What do you see?"):
processor = vision_components["processor"]
model = vision_components["model"]
device = vision_components["device"]
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
try:
# Prepare chat template
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": instruction}
]
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text, [image], return_tensors="pt", do_image_splitting=False).to(device)
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=100)
output = processor.batch_decode(generated_ids[:, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
return output[0].strip() if output else ""
except Exception as e:
print(f"Error in analyze_image: {str(e)}")
return ""
def initialize_llm():
model_id = "meta-llama/Llama-3.2-1B-Instruct"
hf_token = os.environ.get("HF_TOKEN")
# Load and patch config
config = AutoConfig.from_pretrained(model_id, token=hf_token)
if hasattr(config, "rope_scaling"):
rope_scaling = config.rope_scaling
if isinstance(rope_scaling, dict):
config.rope_scaling = {
"type": rope_scaling.get("type", "linear"),
"factor": rope_scaling.get("factor", 1.0)
}
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
config=config,
torch_dtype=torch.bfloat16,
device_map="auto",
token=hf_token
)
return {
"model": model,
"tokenizer": tokenizer
}
def generate_roast(caption, llm_components):
model = llm_components["model"]
tokenizer = llm_components["tokenizer"]
prompt = f"""[INST] You are AsianMOM, a stereotypical Asian mother who always has high expectations. \nYou just observed your child doing this: \"{caption}\"\n \nRespond with a short, humorous roast (maximum 2-3 sentences) in the style of a stereotypical Asian mother. \nInclude at least one of these elements:\n- Comparison to more successful relatives/cousins\n- High expectations about academic success\n- Mild threats about using slippers\n- Questioning life choices\n- Asking when they'll get married or have kids\n- Commenting on appearance\n- Saying \"back in my day\" and describing hardship\n\nBe funny but not hurtful. Keep it brief. [/INST]"""
try:
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=300,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("[/INST]")[1].strip()
return response if isinstance(response, str) else ""
except Exception as e:
print(f"Error in generate_roast: {str(e)}")
return "" # Return empty string on error
# Parler-TTS setup
def setup_tts():
try:
parler_device = "cuda:0" if torch.cuda.is_available() else "cpu"
parler_repo_id = "parler-tts/parler-tts-mini-expresso"
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(parler_repo_id).to(parler_device)
parler_tokenizer = AutoTokenizer.from_pretrained(parler_repo_id)
parler_feature_extractor = AutoFeatureExtractor.from_pretrained(parler_repo_id)
PARLER_SAMPLE_RATE = parler_feature_extractor.sampling_rate
PARLER_SEED = 42
parler_number_normalizer = EnglishNumberNormalizer()
return {
"model": parler_model,
"tokenizer": parler_tokenizer,
"feature_extractor": parler_feature_extractor,
"sample_rate": PARLER_SAMPLE_RATE,
"seed": PARLER_SEED,
"number_normalizer": parler_number_normalizer,
"device": parler_device
}
except Exception as e:
print(f"Error setting up TTS: {str(e)}")
return None
def parler_preprocess(text, number_normalizer):
text = number_normalizer(text).strip()
if text and text[-1] not in punctuation:
text = f"{text}."
abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
def separate_abb(chunk):
chunk = chunk.replace(".", "")
return " ".join(chunk)
abbreviations = re.findall(abbreviations_pattern, text)
for abv in abbreviations:
if abv in text:
text = text.replace(abv, separate_abb(abv))
return text
def text_to_speech(text, tts_components):
if tts_components is None:
return (16000, np.zeros(1)) # Default sample rate if components failed to load
model = tts_components["model"]
tokenizer = tts_components["tokenizer"]
device = tts_components["device"]
sample_rate = tts_components["sample_rate"]
seed = tts_components["seed"]
number_normalizer = tts_components["number_normalizer"]
description = ("Elisabeth speaks in a mature, strict, nagging, and slightly disappointed tone, "
"with a hint of love and high expectations, at a moderate pace with high quality audio. "
"She sounds like a stereotypical Asian mother who compares you to your cousins, "
"questions your life choices, and threatens you with a slipper, but ultimately wants the best for you.")
if not text or not isinstance(text, str):
return (sample_rate, np.zeros(1))
try:
inputs = tokenizer(description, return_tensors="pt").to(device)
prompt = tokenizer(parler_preprocess(text, number_normalizer), return_tensors="pt").to(device)
set_seed(seed)
generation = model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
audio_arr = generation.cpu().numpy().squeeze()
return (sample_rate, audio_arr)
except Exception as e:
print(f"Error in text_to_speech: {str(e)}")
return (sample_rate, np.zeros(1))
def process_frame(image, vision_components, llm_components, tts_components):
try:
caption = analyze_image(image, vision_components)
roast = generate_roast(caption, llm_components)
default_sample_rate = 16000
if tts_components is not None:
default_sample_rate = tts_components["sample_rate"]
if not roast or not isinstance(roast, str):
audio = (default_sample_rate, np.zeros(1))
else:
audio = text_to_speech(roast, tts_components)
return caption, roast, audio
except Exception as e:
print(f"Error in process_frame: {str(e)}")
return "", "", (default_sample_rate, np.zeros(1))
def create_app():
try:
# Initialize components before creating the app
vision_components = initialize_vision_model()
tts_components = setup_tts()
# Try to initialize LLM with Hugging Face token
hf_token = os.environ.get("HF_TOKEN")
llm_components = None
if hf_token:
try:
llm_components = initialize_llm()
except Exception as e:
print(f"Error initializing LLM: {str(e)}. Will use fallback.")
# Fallback if LLM initialization failed
if llm_components is None:
def fallback_generate_roast(caption, _):
return f"I see you {caption}. Why you not doctor yet? Your cousin studying at Harvard!"
llm_components = {"generate_roast": fallback_generate_roast}
# Set initial values and processing parameters
last_process_time = time.time() - 10
processing_interval = 5
with gr.Blocks(theme=gr.themes.Monochrome()) as app:
gr.Markdown("# AsianMOM: Artificial Surveillance with Interactive Analysis with a Nagging Maternal Oversight Model")
gr.Markdown("### Camera captures what you're doing and your Asian mom responds appropriately")
with gr.Row():
with gr.Column():
video_feed = gr.Image(sources=["webcam"], streaming=True, label="Camera Feed")
with gr.Column():
analysis_output = gr.Textbox(label="What AsianMOM Sees", lines=2)
roast_output = gr.Textbox(label="AsianMOM's Thoughts", lines=4)
audio_output = gr.Audio(label="AsianMOM Says", autoplay=True)
# Define processing function
def process_webcam(image):
nonlocal last_process_time
current_time = time.time()
default_caption = ""
default_roast = ""
default_sample_rate = 16000
if tts_components is not None:
default_sample_rate = tts_components["sample_rate"]
default_audio = (default_sample_rate, np.zeros(1))
if current_time - last_process_time >= processing_interval and image is not None:
last_process_time = current_time
try:
caption, roast, audio = process_frame(
image,
vision_components,
llm_components,
tts_components
)
final_caption = caption if isinstance(caption, str) else default_caption
final_roast = roast if isinstance(roast, str) else default_roast
final_audio = audio if isinstance(audio, tuple) and len(audio) == 2 and isinstance(audio[1], np.ndarray) else default_audio
return image, final_caption, final_roast, final_audio
except Exception as e:
print(f"Error in process_webcam: {str(e)}")
return image, default_caption, default_roast, default_audio
# Setup the processing chain
video_feed.change(
process_webcam,
inputs=[video_feed],
outputs=[video_feed, analysis_output, roast_output, audio_output]
)
return app
except Exception as e:
print(f"Error creating app: {str(e)}")
# Create a fallback simple app that reports the error
with gr.Blocks() as fallback_app:
gr.Markdown("# AsianMOM: Error Initializing")
gr.Markdown(f"Error: {str(e)}")
gr.Markdown("Please check your environment setup and try again.")
return fallback_app
if __name__ == "__main__":
try:
# Check and report Gradio version
gradio_version = pkg_resources.get_distribution("gradio").version
print(f"Using Gradio version: {gradio_version}")
# Try to download required resources
try:
os.system('python -m unidic download')
nltk.download('averaged_perceptron_tagger_eng')
except Exception as e:
print(f"Warning: Could not download some resources: {str(e)}")
# Create the app
app = create_app()
# Try multiple launch configurations if needed
try:
# First attempt with share=True
print("Launching app with share=True and debug=True")
app.launch(share=True, debug=True)
except ValueError as e:
if "localhost is not accessible" in str(e):
# Second attempt with server_name to bind to all interfaces
print("Retrying with server_name='0.0.0.0'")
app.launch(share=True, debug=True, server_name="0.0.0.0")
else:
raise e
except Exception as e:
print(f"Fatal error: {str(e)}")
# If all else fails, create a minimal app
with gr.Blocks() as minimal_app:
gr.Markdown("# AsianMOM: Fatal Error")
gr.Markdown(f"Fatal error: {str(e)}")
gr.Markdown("Try updating Gradio with: pip install --upgrade gradio")
try:
minimal_app.launch(share=True, server_name="0.0.0.0")
except:
minimal_app.launch(share=True) # Last attempt with minimal options |