File size: 8,440 Bytes
e94ed44
 
 
 
 
 
 
c42af7b
e94ed44
8c1e484
 
e94ed44
 
5dfc9ca
 
 
 
 
e94ed44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bba8dbb
 
 
 
 
 
 
 
e94ed44
 
 
c42af7b
 
 
 
 
 
 
 
 
 
 
 
 
e94ed44
 
c42af7b
e94ed44
c42af7b
 
e94ed44
 
 
 
 
 
 
 
 
 
bba8dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e94ed44
5dfc9ca
 
 
 
 
 
 
 
 
e94ed44
5dfc9ca
 
 
 
 
 
 
 
 
 
 
 
 
e94ed44
5dfc9ca
 
 
 
 
f599acb
 
5dfc9ca
 
 
 
 
 
 
 
e94ed44
 
f599acb
 
 
 
e94ed44
 
 
 
 
8c1e484
 
e94ed44
 
 
bba8dbb
 
 
e94ed44
 
 
8c1e484
 
5dfc9ca
e94ed44
bba8dbb
 
 
 
 
e94ed44
 
 
 
 
 
 
 
 
 
 
 
 
70a7738
e94ed44
 
 
 
 
 
 
 
 
 
 
 
8c1e484
 
e94ed44
f599acb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import gradio as gr
import torch
import cv2
from PIL import Image
import numpy as np
from transformers import pipeline, AutoProcessor, AutoModelForVision2Seq
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import time
import nltk
import io

from transformers import BlipProcessor, BlipForConditionalGeneration
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoFeatureExtractor, set_seed
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from string import punctuation
import re

# Set environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "false"

def initialize_vision_model():
    # Using BLIP for image captioning - lightweight but effective
    processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
    model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
    
    return {
        "processor": processor,
        "model": model
    }

def analyze_image(image, vision_components):
    processor = vision_components["processor"]
    model = vision_components["model"]
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    try:
        inputs = processor(image, return_tensors="pt")
        with torch.no_grad():
            outputs = model.generate(**inputs, max_length=30)
        caption = processor.decode(outputs[0], skip_special_tokens=True)
        return caption if isinstance(caption, str) else ""
    except Exception:
        return "" # Return empty string on error

def initialize_llm():
    model_id = "meta-llama/Llama-3.2-1B-Instruct"
    hf_token = os.environ.get("HF_TOKEN")

    # Load and patch config
    config = AutoConfig.from_pretrained(model_id, token=hf_token)
    if hasattr(config, "rope_scaling"):
        rope_scaling = config.rope_scaling
        if isinstance(rope_scaling, dict):
            config.rope_scaling = {
                "type": rope_scaling.get("type", "linear"),
                "factor": rope_scaling.get("factor", 1.0)
            }

    tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        config=config,
        torch_dtype=torch.bfloat16,
        device_map="auto",
        token=hf_token
    )
    return {
        "model": model,
        "tokenizer": tokenizer
    }

def generate_roast(caption, llm_components):
    model = llm_components["model"]
    tokenizer = llm_components["tokenizer"]
    prompt = f"""[INST] You are AsianMOM, a stereotypical Asian mother who always has high expectations. \nYou just observed your child doing this: \"{caption}\"\n    \nRespond with a short, humorous roast (maximum 2-3 sentences) in the style of a stereotypical Asian mother. \nInclude at least one of these elements:\n- Comparison to more successful relatives/cousins\n- High expectations about academic success\n- Mild threats about using slippers\n- Questioning life choices\n- Asking when they'll get married or have kids\n- Commenting on appearance\n- Saying \"back in my day\" and describing hardship\n\nBe funny but not hurtful. Keep it brief. [/INST]"""
    try:
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_length=300,
                temperature=0.7,
                top_p=0.9,
                do_sample=True
            )
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        response = response.split("[/INST]")[1].strip()
        return response if isinstance(response, str) else ""
    except Exception:
        return "" # Return empty string on error

# Parler-TTS setup
parler_device = "cuda:0" if torch.cuda.is_available() else "cpu"
parler_repo_id = "parler-tts/parler-tts-mini-expresso"
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(parler_repo_id).to(parler_device)
parler_tokenizer = AutoTokenizer.from_pretrained(parler_repo_id)
parler_feature_extractor = AutoFeatureExtractor.from_pretrained(parler_repo_id)
PARLER_SAMPLE_RATE = parler_feature_extractor.sampling_rate
PARLER_SEED = 42
parler_number_normalizer = EnglishNumberNormalizer()

def parler_preprocess(text):
    text = parler_number_normalizer(text).strip()
    if text and text[-1] not in punctuation:
        text = f"{text}."
    abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
    def separate_abb(chunk):
        chunk = chunk.replace(".", "")
        return " ".join(chunk)
    abbreviations = re.findall(abbreviations_pattern, text)
    for abv in abbreviations:
        if abv in text:
            text = text.replace(abv, separate_abb(abv))
    return text

def text_to_speech(text):
    description = ("Elisabeth speaks in a mature, strict, nagging, and slightly disappointed tone, "
                   "with a hint of love and high expectations, at a moderate pace with high quality audio. "
                   "She sounds like a stereotypical Asian mother who compares you to your cousins, "
                   "questions your life choices, and threatens you with a slipper, but ultimately wants the best for you.")
    if not text or not isinstance(text, str):
        return (PARLER_SAMPLE_RATE, np.zeros(1))
    inputs = parler_tokenizer(description, return_tensors="pt").to(parler_device)
    prompt = parler_tokenizer(parler_preprocess(text), return_tensors="pt").to(parler_device)
    set_seed(PARLER_SEED)
    generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
    audio_arr = generation.cpu().numpy().squeeze()
    return (PARLER_SAMPLE_RATE, audio_arr)

def process_frame(image, vision_components, llm_components):
    caption = analyze_image(image, vision_components)
    roast = generate_roast(caption, llm_components)
    if not roast or not isinstance(roast, str):
        audio = (PARLER_SAMPLE_RATE, np.zeros(1))
    else:
        audio = text_to_speech(roast)
    return caption, roast, audio

def setup_processing_chain(video_feed, analysis_output, roast_output, audio_output):
    vision_components = initialize_vision_model()
    llm_components = initialize_llm()
    last_process_time = time.time() - 10
    processing_interval = 5
    def process_webcam(image):
        nonlocal last_process_time
        current_time = time.time()
        default_caption = "" 
        default_roast = ""
        default_audio = (PARLER_SAMPLE_RATE, np.zeros(1))
        if current_time - last_process_time >= processing_interval and image is not None:
            last_process_time = current_time
            caption, roast, audio = process_frame(
                image,
                vision_components,
                llm_components
            )
            final_caption = caption if isinstance(caption, str) else default_caption
            final_roast = roast if isinstance(roast, str) else default_roast
            final_audio = audio if isinstance(audio, tuple) and len(audio) == 2 and isinstance(audio[1], np.ndarray) else default_audio
            return image, final_caption, final_roast, final_audio
        return image, default_caption, default_roast, default_audio
    video_feed.change(
        process_webcam,
        inputs=[video_feed],
        outputs=[video_feed, analysis_output, roast_output, audio_output]
    )

def create_app():
    with gr.Blocks(theme=gr.themes.Soft()) as app:
        gr.Markdown("# AsianMOM: Asian Mother Observer & Mocker")
        gr.Markdown("### Camera captures what you're doing and your Asian mom responds appropriately")
        
        with gr.Row():
            with gr.Column():
                video_feed = gr.Image(sources=["webcam"], streaming=True, label="Camera Feed")
            
            with gr.Column():
                analysis_output = gr.Textbox(label="What AsianMOM Sees", lines=2)
                roast_output = gr.Textbox(label="AsianMOM's Thoughts", lines=4)
                audio_output = gr.Audio(label="AsianMOM Says", autoplay=True)
        
        # Setup the processing chain
        setup_processing_chain(video_feed, analysis_output, roast_output, audio_output)
                
    return app

if __name__ == "__main__":
    os.system('python -m unidic download')
    nltk.download('averaged_perceptron_tagger_eng')
    app = create_app()
    app.launch(share=True)