import streamlit as st import speech_recognition as sr from gtts import gTTS import os import io def transcribe_audio(audio_file): """Transcribe uploaded audio file to text.""" recognizer = sr.Recognizer() try: # Save uploaded file temporarily with open("temp_audio.wav", "wb") as f: f.write(audio_file.read()) # Transcribe using SpeechRecognition with sr.AudioFile("temp_audio.wav") as source: audio = recognizer.record(source) text = recognizer.recognize_google(audio) # Clean up os.remove("temp_audio.wav") return text except Exception as e: st.error(f"Audio transcription failed: {str(e)}") return "" def text_to_speech(text, target_lang): """Convert translated text to audio with robust handling using memory buffer.""" try: if not text: st.error("No text to convert to audio.") return None # Map target language to gTTS codes lang_map = { "English": "en", "French": "fr", "Spanish": "es", "German": "de", "Chinese": "zh-cn", "Arabic": "ar", "Russian": "ru", "Hindi": "hi", "Japanese": "ja", } lang_code = lang_map.get(target_lang, "en") # Generate audio in memory st.write(f"Generating audio for language code: {lang_code}") # Debug output tts = gTTS(text=text, lang=lang_code, slow=False) audio_buffer = io.BytesIO() tts.write_to_fp(audio_buffer) audio_buffer.seek(0) # Save temporarily for debugging (optional) with open("output_audio.mp3", "wb") as f: f.write(audio_buffer.getbuffer()) st.success(f"Audio generated in memory for {target_lang}") return audio_buffer except Exception as e: st.error(f"Audio generation failed: {str(e)}") return None