Update translation.py
Browse files- translation.py +74 -63
translation.py
CHANGED
@@ -2,13 +2,14 @@ import streamlit as st
|
|
2 |
from transformers import MarianTokenizer, MarianMTModel
|
3 |
import torch
|
4 |
|
|
|
5 |
LANGUAGES = {
|
6 |
"en": ("English", "English"), "fr": ("Français", "French"), "es": ("Español", "Spanish"),
|
7 |
"de": ("Deutsch", "German"), "hi": ("हिन्दी", "Hindi"), "zh": ("中文", "Chinese"),
|
8 |
"ar": ("العربية", "Arabic"), "ru": ("Русский", "Russian"), "ja": ("日本語", "Japanese")
|
9 |
}
|
10 |
|
11 |
-
#
|
12 |
@st.cache_resource
|
13 |
def _load_model_pair(source_lang, target_lang):
|
14 |
try:
|
@@ -16,10 +17,11 @@ def _load_model_pair(source_lang, target_lang):
|
|
16 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
17 |
model = MarianMTModel.from_pretrained(model_name)
|
18 |
return tokenizer, model
|
19 |
-
except Exception:
|
|
|
20 |
return None, None
|
21 |
|
22 |
-
#
|
23 |
@st.cache_resource
|
24 |
def _load_all_models():
|
25 |
models = {}
|
@@ -29,40 +31,39 @@ def _load_all_models():
|
|
29 |
models[(src, tgt)] = _load_model_pair(src, tgt)
|
30 |
return models
|
31 |
|
|
|
32 |
all_models = _load_all_models()
|
33 |
|
34 |
-
#
|
35 |
def combined_translate(text, source_lang, target_lang, default_tokenizer, default_model):
|
36 |
-
|
37 |
-
if source_lang
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
return translated if translated.strip() else text
|
62 |
-
return inter_text
|
63 |
return text
|
64 |
|
65 |
-
# Class to handle combined translation
|
66 |
class CombinedModel:
|
67 |
def __init__(self, source_lang, target_lang, default_tokenizer, default_model):
|
68 |
self.source_lang = source_lang
|
@@ -71,47 +72,57 @@ class CombinedModel:
|
|
71 |
self.default_model = default_model
|
72 |
|
73 |
def generate(self, **kwargs):
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
return torch.tensor([])
|
77 |
-
inputs = self.default_tokenizer.batch_decode(input_ids, skip_special_tokens=True)
|
78 |
-
translated = [combined_translate(text, self.source_lang, self.target_lang, self.default_tokenizer, self.default_model) for text in inputs]
|
79 |
-
return torch.tensor([self.default_tokenizer.encode(t, return_tensors="pt", padding=True, truncation=True, max_length=500)[0] for t in translated])
|
80 |
|
81 |
-
#
|
82 |
@st.cache_resource
|
83 |
def load_model(source_lang, target_lang):
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
100 |
|
101 |
-
#
|
102 |
@st.cache_resource
|
103 |
def _load_default_model():
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
#
|
110 |
@st.cache_data
|
111 |
def translate(text, source_lang, target_lang):
|
112 |
-
if not text:
|
113 |
-
return ""
|
114 |
try:
|
|
|
|
|
115 |
tokenizer, model = load_model(source_lang, target_lang)
|
116 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=500)
|
117 |
if inputs['input_ids'].size(0) > 1:
|
@@ -121,5 +132,5 @@ def translate(text, source_lang, target_lang):
|
|
121 |
result = tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
122 |
return result if result.strip() else text
|
123 |
except Exception as e:
|
124 |
-
st.error(f"Translation
|
125 |
return text
|
|
|
2 |
from transformers import MarianTokenizer, MarianMTModel
|
3 |
import torch
|
4 |
|
5 |
+
# Define supported languages
|
6 |
LANGUAGES = {
|
7 |
"en": ("English", "English"), "fr": ("Français", "French"), "es": ("Español", "Spanish"),
|
8 |
"de": ("Deutsch", "German"), "hi": ("हिन्दी", "Hindi"), "zh": ("中文", "Chinese"),
|
9 |
"ar": ("العربية", "Arabic"), "ru": ("Русский", "Russian"), "ja": ("日本語", "Japanese")
|
10 |
}
|
11 |
|
12 |
+
# Load a specific translation model pair with caching
|
13 |
@st.cache_resource
|
14 |
def _load_model_pair(source_lang, target_lang):
|
15 |
try:
|
|
|
17 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
18 |
model = MarianMTModel.from_pretrained(model_name)
|
19 |
return tokenizer, model
|
20 |
+
except Exception as e:
|
21 |
+
st.error(f"Failed to load model pair ({source_lang} to {target_lang}): {e}")
|
22 |
return None, None
|
23 |
|
24 |
+
# Load all possible model combinations with caching
|
25 |
@st.cache_resource
|
26 |
def _load_all_models():
|
27 |
models = {}
|
|
|
31 |
models[(src, tgt)] = _load_model_pair(src, tgt)
|
32 |
return models
|
33 |
|
34 |
+
# Preload all models
|
35 |
all_models = _load_all_models()
|
36 |
|
37 |
+
# Perform combined translation through intermediate languages
|
38 |
def combined_translate(text, source_lang, target_lang, default_tokenizer, default_model):
|
39 |
+
try:
|
40 |
+
if source_lang == target_lang: # No translation needed if languages are same
|
41 |
+
return text
|
42 |
+
if source_lang != "en":
|
43 |
+
src_to_inter_tokenizer, src_to_inter_model = None, None
|
44 |
+
for inter in ["en", "fr", "es", "de", "ru"]: # Try multiple intermediates
|
45 |
+
pair = all_models.get((source_lang, inter))
|
46 |
+
if pair and pair[0] and pair[1]:
|
47 |
+
src_to_inter_tokenizer, src_to_inter_model = pair
|
48 |
+
break
|
49 |
+
inter_text = src_to_inter_tokenizer.decode(src_to_inter_model.generate(**src_to_inter_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=500))[0], skip_special_tokens=True) if src_to_inter_tokenizer else text
|
50 |
+
else:
|
51 |
+
inter_text = text
|
52 |
+
if target_lang != "en":
|
53 |
+
inter_to_tgt_tokenizer, inter_to_tgt_model = None, None
|
54 |
+
for inter in ["en", "fr", "es", "de", "ru"]:
|
55 |
+
pair = all_models.get((inter, target_lang))
|
56 |
+
if pair and pair[0] and pair[1]:
|
57 |
+
inter_to_tgt_tokenizer, inter_to_tgt_model = pair
|
58 |
+
break
|
59 |
+
translated = inter_to_tgt_tokenizer.decode(inter_to_tgt_model.generate(**inter_to_tgt_tokenizer(inter_text, return_tensors="pt", padding=True, truncation=True, max_length=1000))[0], skip_special_tokens=True) if inter_to_tgt_tokenizer else inter_text
|
60 |
+
return translated if translated.strip() else text
|
61 |
+
return inter_text
|
62 |
+
except Exception as e:
|
63 |
+
st.error(f"Translation error in combined_translate: {e}")
|
|
|
|
|
64 |
return text
|
65 |
|
66 |
+
# Class to handle combined translation
|
67 |
class CombinedModel:
|
68 |
def __init__(self, source_lang, target_lang, default_tokenizer, default_model):
|
69 |
self.source_lang = source_lang
|
|
|
72 |
self.default_model = default_model
|
73 |
|
74 |
def generate(self, **kwargs):
|
75 |
+
try:
|
76 |
+
input_ids = kwargs.get('input_ids')
|
77 |
+
if not input_ids or input_ids.size(0) == 0:
|
78 |
+
return torch.tensor([])
|
79 |
+
inputs = self.default_tokenizer.batch_decode(input_ids, skip_special_tokens=True)
|
80 |
+
translated = [combined_translate(text, self.source_lang, self.target_lang, self.default_tokenizer, self.default_model) for text in inputs]
|
81 |
+
return torch.tensor([self.default_tokenizer.encode(t, return_tensors="pt", padding=True, truncation=True, max_length=500)[0] for t in translated])
|
82 |
+
except Exception as e:
|
83 |
+
st.error(f"Generation error in CombinedModel: {e}")
|
84 |
return torch.tensor([])
|
|
|
|
|
|
|
85 |
|
86 |
+
# Load appropriate translation model with caching
|
87 |
@st.cache_resource
|
88 |
def load_model(source_lang, target_lang):
|
89 |
+
try:
|
90 |
+
if source_lang == target_lang:
|
91 |
+
return _load_default_model()
|
92 |
+
model_key = (source_lang, target_lang)
|
93 |
+
tokenizer_model_pair = all_models.get(model_key)
|
94 |
+
if tokenizer_model_pair and tokenizer_model_pair[0] and tokenizer_model_pair[1]:
|
95 |
+
return tokenizer_model_pair
|
96 |
+
for inter in LANGUAGES.keys():
|
97 |
+
if inter != source_lang and inter != target_lang:
|
98 |
+
pair1 = all_models.get((source_lang, inter))
|
99 |
+
pair2 = all_models.get((inter, target_lang))
|
100 |
+
if pair1 and pair1[0] and pair1[1] and pair2 and pair2[0] and pair2[1]:
|
101 |
+
return pair1
|
102 |
+
default_tokenizer, default_model = _load_default_model()
|
103 |
+
return default_tokenizer, CombinedModel(source_lang, target_lang, default_tokenizer, default_model)
|
104 |
+
except Exception as e:
|
105 |
+
st.error(f"Failed to load model: {e}")
|
106 |
+
raise
|
107 |
|
108 |
+
# Load default translation model with caching
|
109 |
@st.cache_resource
|
110 |
def _load_default_model():
|
111 |
+
try:
|
112 |
+
model_name = "Helsinki-NLP/opus-mt-en-hi"
|
113 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
114 |
+
model = MarianMTModel.from_pretrained(model_name)
|
115 |
+
return tokenizer, model
|
116 |
+
except Exception as e:
|
117 |
+
st.error(f"Failed to load default model: {e}")
|
118 |
+
raise
|
119 |
|
120 |
+
# Translate text with caching
|
121 |
@st.cache_data
|
122 |
def translate(text, source_lang, target_lang):
|
|
|
|
|
123 |
try:
|
124 |
+
if not text:
|
125 |
+
return ""
|
126 |
tokenizer, model = load_model(source_lang, target_lang)
|
127 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=500)
|
128 |
if inputs['input_ids'].size(0) > 1:
|
|
|
132 |
result = tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
133 |
return result if result.strip() else text
|
134 |
except Exception as e:
|
135 |
+
st.error(f"Translation failed: {e}")
|
136 |
return text
|