Krishna086's picture
Update translation.py
71d9b1a verified
raw
history blame
3.36 kB
import streamlit as st
from transformers import MarianTokenizer, MarianMTModel
import torch
LANGUAGES = {
"en": ("English", "English"), "fr": ("Français", "French"), "es": ("Español", "Spanish"),
"de": ("Deutsch", "German"), "hi": ("हिन्दी", "Hindi"), "zh": ("中文", "Chinese"),
"ar": ("العربية", "Arabic"), "ru": ("Русский", "Russian"), "ja": ("日本語", "Japanese")
}
@st.cache_resource
def _load_model_pair(source_lang, target_lang):
try:
model_name = f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
return tokenizer, model
except Exception:
return None, None
@st.cache_resource
def _load_all_models():
models = {}
for src in LANGUAGES.keys():
for tgt in LANGUAGES.keys():
if src != tgt:
models[(src, tgt)] = _load_model_pair(src, tgt)
return models
all_models = _load_all_models()
def load_model(source_lang, target_lang):
if source_lang == target_lang:
return _load_default_model()
model_key = (source_lang, target_lang)
if all_models.get(model_key) and all_models[model_key][0] and all_models[model_key][1]:
return all_models[model_key]
# Pivot through English
def combined_translate(text):
en_tokenizer, en_model = all_models.get(("en", "en"), _load_default_model())
if source_lang != "en":
src_to_en_tokenizer, src_to_en_model = all_models.get((source_lang, "en"), _load_model_pair(source_lang, "en")) or _load_default_model()
en_text = src_to_en_tokenizer.decode(src_to_en_model.generate(**src_to_en_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=500))[0], skip_special_tokens=True)
else:
en_text = text
if target_lang != "en":
en_to_tgt_tokenizer, en_to_tgt_model = all_models.get(("en", target_lang), _load_model_pair("en", target_lang)) or _load_default_model()
return en_to_tgt_tokenizer.decode(en_to_tgt_model.generate(**en_to_tgt_tokenizer(en_text, return_tensors="pt", padding=True, truncation=True, max_length=500))[0], skip_special_tokens=True)
return en_text
class CombinedModel:
def generate(self, **kwargs):
return torch.tensor([combined_translate(tokenizer.decode(x, skip_special_tokens=True)) for x in kwargs['input_ids']])
tokenizer, _ = _load_default_model()
return tokenizer, CombinedModel()
@st.cache_resource
def _load_default_model():
model_name = "Helsinki-NLP/opus-mt-en-hi"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
return tokenizer, model
def translate(text, source_lang, target_lang):
if not text:
return ""
try:
tokenizer, model = load_model(source_lang, target_lang)
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=500)
with torch.no_grad():
translated = model.generate(**inputs, max_length=500, num_beams=2, early_stopping=True)
return tokenizer.decode(translated[0], skip_special_tokens=True)
except Exception as e:
st.error(f"Translation error: {e}")
return text