Krishna086's picture
Update translation.py
2328aaa verified
raw
history blame
4.68 kB
import streamlit as st
from transformers import MarianTokenizer, MarianMTModel
import torch
LANGUAGES = {
"en": ("English", "English"), "fr": ("Français", "French"), "es": ("Español", "Spanish"),
"de": ("Deutsch", "German"), "hi": ("हिन्दी", "Hindi"), "zh": ("中文", "Chinese"),
"ar": ("العربية", "Arabic"), "ru": ("Русский", "Russian"), "ja": ("日本語", "Japanese")
}
# Cache resource to load a specific translation model pair
@st.cache_resource
def _load_model_pair(source_lang, target_lang):
try:
model_name = f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
return tokenizer, model
except Exception:
return None, None
# Cache resource to load all possible model combinations
@st.cache_resource
def _load_all_models():
models = {}
for src in LANGUAGES.keys():
for tgt in LANGUAGES.keys():
if src != tgt:
models[(src, tgt)] = _load_model_pair(src, tgt)
return models
all_models = _load_all_models()
# Define combined_translate outside load_model with explicit parameters
def combined_translate(text, source_lang, target_lang, default_tokenizer, default_model):
with torch.no_grad():
if source_lang != "en":
src_to_en_tokenizer, src_to_en_model = all_models.get((source_lang, "en"), (default_tokenizer, default_model))
en_text = src_to_en_tokenizer.decode(src_to_en_model.generate(**src_to_en_tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=500))[0], skip_special_tokens=True)
else:
en_text = text
if target_lang != "en":
en_to_tgt_tokenizer, en_to_tgt_model = all_models.get(("en", target_lang), (default_tokenizer, default_model))
return en_to_tgt_tokenizer.decode(en_to_tgt_model.generate(**en_to_tgt_tokenizer(en_text, return_tensors="pt", padding=True, truncation=True, max_length=1000))[0], skip_special_tokens=True)
return en_text
# Class to handle combined translation through English pivot
class CombinedModel:
def __init__(self, source_lang, target_lang, default_tokenizer, default_model):
self.source_lang = source_lang
self.target_lang = target_lang
self.default_tokenizer = default_tokenizer
self.default_model = default_model
def generate(self, **kwargs):
input_ids = kwargs.get('input_ids')
if not input_ids:
return torch.tensor([])
return torch.tensor([combined_translate(tokenizer.decode(x, skip_special_tokens=True), self.source_lang, self.target_lang, self.default_tokenizer, self.default_model) for x in input_ids])
# Function to load appropriate translation model with optimized caching
@st.cache_resource
def load_model(source_lang, target_lang):
if source_lang == target_lang:
return _load_default_model()
model_key = (source_lang, target_lang)
tokenizer_model_pair = all_models.get(model_key)
if tokenizer_model_pair and tokenizer_model_pair[0] and tokenizer_model_pair[1]:
return tokenizer_model_pair
# Prefer direct model if available, then pivot
for src in [source_lang, "en"]:
for tgt in [target_lang, "en"]:
if src != tgt:
pair = all_models.get((src, tgt))
if pair and pair[0] and pair[1]:
return pair
default_tokenizer, default_model = _load_default_model()
return default_tokenizer, CombinedModel(source_lang, target_lang, default_tokenizer, default_model)
# Cache resource to load default translation model
@st.cache_resource
def _load_default_model():
model_name = "Helsinki-NLP/opus-mt-en-hi"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
return tokenizer, model
# Cache translation results to improve speed
@st.cache_data
def translate(text, source_lang, target_lang):
if not text:
return ""
try:
tokenizer, model = load_model(source_lang, target_lang)
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=500)
with torch.no_grad():
translated = model.generate(**inputs, max_length=1000 if target_lang == "hi" else 500, num_beams=4, early_stopping=True) # Reduced to 4 beams for speed
result = tokenizer.decode(translated[0], skip_special_tokens=True)
return result if result.strip() else text
except Exception as e:
st.error(f"Translation error: {e}")
return text