Krishna086's picture
Update translation.py
02a14aa verified
raw
history blame
1.63 kB
import streamlit as st
from transformers import MarianTokenizer, MarianMTModel
@st.cache_resource
def _load_default_model():
model_name = "Helsinki-NLP/opus-mt-en-fr"
return MarianTokenizer.from_pretrained(model_name), MarianMTModel.from_pretrained(model_name)
@st.cache_resource
def load_model(src_lang, tgt_lang):
try:
model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}"
return MarianTokenizer.from_pretrained(model_name), MarianMTModel.from_pretrained(model_name)
except:
st.warning(f"No model for {src_lang} to {tgt_lang}. Using en-fr.")
return _load_default_model()
DEFAULT_TOKENIZER, DEFAULT_MODEL = _load_default_model()
def translate(text, source_lang, target_lang):
if not text:
return "No text provided."
src_code = {"English": "en", "French": "fr", "Spanish": "es", "German": "de",
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}.get(source_lang, "en")
tgt_code = {"English": "en", "French": "fr", "Spanish": "es", "German": "de",
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}.get(target_lang, "fr")
tokenizer, model = load_model(src_code, tgt_code)
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=400)
translated = model.generate(**inputs)
return tokenizer.decode(translated[0], skip_special_tokens=True)
LANGUAGES = {"English": "en", "French": "fr", "Spanish": "es", "German": "de",
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}