|
import streamlit as st |
|
from transformers import MarianTokenizer, MarianMTModel |
|
|
|
@st.cache_resource |
|
def _load_default_model(): |
|
model_name = "Helsinki-NLP/opus-mt-en-fr" |
|
return MarianTokenizer.from_pretrained(model_name), MarianMTModel.from_pretrained(model_name) |
|
|
|
@st.cache_resource |
|
def load_model(src_lang, tgt_lang): |
|
try: |
|
model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}" |
|
return MarianTokenizer.from_pretrained(model_name), MarianMTModel.from_pretrained(model_name) |
|
except: |
|
st.warning(f"No model for {src_lang} to {tgt_lang}. Using en-fr.") |
|
return _load_default_model() |
|
|
|
DEFAULT_TOKENIZER, DEFAULT_MODEL = _load_default_model() |
|
|
|
def translate(text, source_lang, target_lang): |
|
if not text: |
|
return "No text provided." |
|
src_code = {"English": "en", "French": "fr", "Spanish": "es", "German": "de", |
|
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}.get(source_lang, "en") |
|
tgt_code = {"English": "en", "French": "fr", "Spanish": "es", "German": "de", |
|
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"}.get(target_lang, "fr") |
|
tokenizer, model = load_model(src_code, tgt_code) |
|
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=400) |
|
translated = model.generate(**inputs) |
|
return tokenizer.decode(translated[0], skip_special_tokens=True) |
|
|
|
LANGUAGES = {"English": "en", "French": "fr", "Spanish": "es", "German": "de", |
|
"Hindi": "hi", "Chinese": "zh", "Arabic": "ar", "Russian": "ru", "Japanese": "ja"} |