Updated app for version 2
Browse files
app.py
CHANGED
@@ -1,48 +1,57 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
-
import os
|
4 |
-
import google.generativeai as genai
|
|
|
|
|
|
|
5 |
|
6 |
-
#
|
|
|
|
|
|
|
|
|
7 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
8 |
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
|
9 |
|
10 |
-
#
|
11 |
-
MODEL_ID = "Salesforce/codet5p-770m"
|
12 |
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
13 |
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
14 |
|
15 |
-
#
|
16 |
-
genai.configure(api_key=
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
"parameters": {
|
25 |
-
"max_new_tokens": 150,
|
26 |
-
"temperature": 0.2,
|
27 |
-
"top_k": 50
|
28 |
-
}
|
29 |
-
})
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def fallback_translate_with_gemini(code_snippet, source_lang, target_lang):
|
39 |
-
"""Fallback function using Gemini API for translation."""
|
40 |
prompt = f"""You are a code translation expert. Convert the following {source_lang} code to {target_lang}:
|
41 |
|
42 |
{code_snippet}
|
43 |
|
44 |
Ensure the translation is accurate and follows {target_lang} best practices.
|
45 |
-
Do not give any
|
46 |
"""
|
47 |
try:
|
48 |
model = genai.GenerativeModel("gemini-1.5-pro")
|
@@ -51,17 +60,55 @@ def fallback_translate_with_gemini(code_snippet, source_lang, target_lang):
|
|
51 |
except Exception as e:
|
52 |
return f"Gemini API Error: {str(e)}"
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
source_lang = st.selectbox("Select source language", languages)
|
61 |
target_lang = st.selectbox("Select target language", languages)
|
62 |
code_input = st.text_area("Enter your code here:", height=200)
|
63 |
|
64 |
-
# Initialize session state
|
65 |
if "translate_attempts" not in st.session_state:
|
66 |
st.session_state.translate_attempts = 0
|
67 |
st.session_state.translated_code = ""
|
@@ -69,13 +116,15 @@ if "translate_attempts" not in st.session_state:
|
|
69 |
if st.button("Translate"):
|
70 |
if code_input.strip():
|
71 |
st.session_state.translate_attempts += 1
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
else:
|
77 |
-
# Second attempt uses Gemini API
|
78 |
st.session_state.translated_code = fallback_translate_with_gemini(code_input, source_lang, target_lang)
|
|
|
|
|
|
|
|
|
79 |
|
80 |
st.subheader("Translated Code:")
|
81 |
st.code(st.session_state.translated_code, language=target_lang.lower())
|
@@ -95,28 +144,27 @@ if st.button("Translate"):
|
|
95 |
|
96 |
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
# V1 without gemini api
|
102 |
|
103 |
# import streamlit as st
|
104 |
# import requests
|
105 |
-
# import os #
|
106 |
-
|
107 |
-
# # Get API token from environment variable
|
108 |
-
# API_TOKEN = os.getenv("HF_API_TOKEN")
|
109 |
|
|
|
|
|
|
|
110 |
|
111 |
-
# #
|
112 |
# MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended)
|
113 |
-
# # MODEL_ID = "bigcode/starcoder2-15b" # StarCoder2
|
114 |
-
# # MODEL_ID = "bigcode/starcoder"
|
115 |
# API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
116 |
-
# HEADERS = {"Authorization": f"Bearer {
|
|
|
|
|
|
|
117 |
|
118 |
# def translate_code(code_snippet, source_lang, target_lang):
|
119 |
-
# """Translate code using Hugging Face API
|
120 |
# prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
|
121 |
|
122 |
# response = requests.post(API_URL, headers=HEADERS, json={
|
@@ -125,7 +173,6 @@ if st.button("Translate"):
|
|
125 |
# "max_new_tokens": 150,
|
126 |
# "temperature": 0.2,
|
127 |
# "top_k": 50
|
128 |
-
# # "stop": ["\n\n", "#", "//", "'''"]
|
129 |
# }
|
130 |
# })
|
131 |
|
@@ -136,8 +183,24 @@ if st.button("Translate"):
|
|
136 |
# else:
|
137 |
# return f"Error: {response.status_code}, {response.text}"
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
# # Streamlit UI
|
140 |
-
# st.title("π
|
141 |
# st.write("Translate code between different programming languages using AI.")
|
142 |
|
143 |
# languages = ["Python", "Java", "C++", "C"]
|
@@ -146,11 +209,96 @@ if st.button("Translate"):
|
|
146 |
# target_lang = st.selectbox("Select target language", languages)
|
147 |
# code_input = st.text_area("Enter your code here:", height=200)
|
148 |
|
|
|
|
|
|
|
|
|
|
|
149 |
# if st.button("Translate"):
|
150 |
# if code_input.strip():
|
|
|
151 |
# with st.spinner("Translating..."):
|
152 |
-
#
|
153 |
-
#
|
154 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
# else:
|
156 |
# st.warning("β οΈ Please enter some code before translating.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
+
import os
|
4 |
+
import google.generativeai as genai
|
5 |
+
import tensorflow as tf
|
6 |
+
import numpy as np
|
7 |
+
from tensorflow.keras.layers import TextVectorization
|
8 |
|
9 |
+
# --- Config ---
|
10 |
+
vocab_size = 10000
|
11 |
+
sequence_length = 150
|
12 |
+
|
13 |
+
# Load API keys
|
14 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
15 |
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
|
16 |
|
17 |
+
# Hugging Face setup
|
18 |
+
MODEL_ID = "Salesforce/codet5p-770m"
|
19 |
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
20 |
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
21 |
|
22 |
+
# Gemini setup
|
23 |
+
genai.configure(api_key="AIzaSyBkc8CSEhyYwZAuUiJfzF1Xtns-RYmBOpg")
|
24 |
|
25 |
+
# --- Load Local Model & Vectorizers ---
|
26 |
+
model = tf.keras.models.load_model("java_to_python_seq2seq_model.h5")
|
|
|
27 |
|
28 |
+
java_vectorizer = TextVectorization(max_tokens=vocab_size, output_sequence_length=sequence_length)
|
29 |
+
python_vectorizer = TextVectorization(max_tokens=vocab_size, output_sequence_length=sequence_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Fake adaptation to initialize vectorizers
|
32 |
+
java_vectorizer.adapt(tf.data.Dataset.from_tensor_slices(["public class Main { public static void main(String[] args) {} }"]))
|
33 |
+
python_vectorizer.adapt(tf.data.Dataset.from_tensor_slices(["def main():\n pass"]))
|
34 |
+
|
35 |
+
# Reverse lookup for Python vocab
|
36 |
+
python_vocab = python_vectorizer.get_vocabulary()
|
37 |
+
index_to_word = dict(enumerate(python_vocab))
|
38 |
+
|
39 |
+
def decode_sequence(pred):
|
40 |
+
"""Greedy decoding of the prediction."""
|
41 |
+
pred_ids = tf.argmax(pred, axis=-1).numpy()[0]
|
42 |
+
tokens = [index_to_word.get(i, "") for i in pred_ids]
|
43 |
+
code = " ".join(tokens).replace("[UNK]", "").strip()
|
44 |
+
return code
|
45 |
+
|
46 |
+
# --- Translation Functions ---
|
47 |
|
48 |
def fallback_translate_with_gemini(code_snippet, source_lang, target_lang):
|
|
|
49 |
prompt = f"""You are a code translation expert. Convert the following {source_lang} code to {target_lang}:
|
50 |
|
51 |
{code_snippet}
|
52 |
|
53 |
Ensure the translation is accurate and follows {target_lang} best practices.
|
54 |
+
Do not give any explanation. Only give the translated code.
|
55 |
"""
|
56 |
try:
|
57 |
model = genai.GenerativeModel("gemini-1.5-pro")
|
|
|
60 |
except Exception as e:
|
61 |
return f"Gemini API Error: {str(e)}"
|
62 |
|
63 |
+
def translate_with_local_model(code_snippet):
|
64 |
+
"""Local seq2seq JavaβPython translation."""
|
65 |
+
try:
|
66 |
+
java_seq = java_vectorizer(tf.constant([code_snippet]))
|
67 |
+
python_in = tf.constant([[1] + [0] * (sequence_length - 1)]) # <start> token
|
68 |
+
translated_tokens = []
|
69 |
+
|
70 |
+
for i in range(sequence_length):
|
71 |
+
preds = model.predict([java_seq, python_in], verbose=0)
|
72 |
+
next_token = tf.argmax(preds[0, i]).numpy()
|
73 |
+
translated_tokens.append(next_token)
|
74 |
+
if next_token == 0:
|
75 |
+
break
|
76 |
+
if i + 1 < sequence_length:
|
77 |
+
python_in = tf.tensor_scatter_nd_update(
|
78 |
+
python_in, [[0, i + 1]], [next_token]
|
79 |
+
)
|
80 |
+
|
81 |
+
tokens = [index_to_word.get(t, "") for t in translated_tokens]
|
82 |
+
return " ".join(tokens).replace("[UNK]", "").strip()
|
83 |
|
84 |
+
except Exception as e:
|
85 |
+
return f"Local Model Error: {str(e)}"
|
86 |
+
|
87 |
+
def translate_code(code_snippet, source_lang, target_lang):
|
88 |
+
"""Hugging Face translation."""
|
89 |
+
prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
|
90 |
+
response = requests.post(API_URL, headers=HEADERS, json={
|
91 |
+
"inputs": prompt,
|
92 |
+
"parameters": {"max_new_tokens": 150, "temperature": 0.2, "top_k": 50}
|
93 |
+
})
|
94 |
|
95 |
+
if response.status_code == 200:
|
96 |
+
generated_text = response.json()[0]["generated_text"]
|
97 |
+
translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
|
98 |
+
return translated_code
|
99 |
+
else:
|
100 |
+
return f"Error: {response.status_code}, {response.text}"
|
101 |
+
|
102 |
+
# --- Streamlit UI ---
|
103 |
+
|
104 |
+
st.title("π Programming Language Translator")
|
105 |
+
st.write("Translate code between programming languages using 3-tier AI fallback.")
|
106 |
+
|
107 |
+
languages = ["Python", "Java", "C++", "C"]
|
108 |
source_lang = st.selectbox("Select source language", languages)
|
109 |
target_lang = st.selectbox("Select target language", languages)
|
110 |
code_input = st.text_area("Enter your code here:", height=200)
|
111 |
|
|
|
112 |
if "translate_attempts" not in st.session_state:
|
113 |
st.session_state.translate_attempts = 0
|
114 |
st.session_state.translated_code = ""
|
|
|
116 |
if st.button("Translate"):
|
117 |
if code_input.strip():
|
118 |
st.session_state.translate_attempts += 1
|
119 |
+
attempt = st.session_state.translate_attempts
|
120 |
+
|
121 |
+
with st.spinner(f"Translating..."):
|
122 |
+
if attempt == 1:
|
|
|
|
|
123 |
st.session_state.translated_code = fallback_translate_with_gemini(code_input, source_lang, target_lang)
|
124 |
+
elif attempt == 2 and source_lang == "Java" and target_lang == "Python":
|
125 |
+
st.session_state.translated_code = translate_with_local_model(code_input)
|
126 |
+
else:
|
127 |
+
st.session_state.translated_code = translate_code(code_input, source_lang, target_lang)
|
128 |
|
129 |
st.subheader("Translated Code:")
|
130 |
st.code(st.session_state.translated_code, language=target_lang.lower())
|
|
|
144 |
|
145 |
|
146 |
|
147 |
+
# version1: Without Trained model.
|
|
|
|
|
|
|
148 |
|
149 |
# import streamlit as st
|
150 |
# import requests
|
151 |
+
# import os # To access environment variables
|
152 |
+
# import google.generativeai as genai # Import Gemini API
|
|
|
|
|
153 |
|
154 |
+
# # Load API keys from environment variables
|
155 |
+
# HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
156 |
+
# GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
|
157 |
|
158 |
+
# # Set up Hugging Face API
|
159 |
# MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended)
|
|
|
|
|
160 |
# API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
161 |
+
# HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
162 |
+
|
163 |
+
# # Initialize Gemini API
|
164 |
+
# genai.configure(api_key='AIzaSyBkc8CSEhyYwZAuUiJfzF1Xtns-RYmBOpg')
|
165 |
|
166 |
# def translate_code(code_snippet, source_lang, target_lang):
|
167 |
+
# """Translate code using Hugging Face API."""
|
168 |
# prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
|
169 |
|
170 |
# response = requests.post(API_URL, headers=HEADERS, json={
|
|
|
173 |
# "max_new_tokens": 150,
|
174 |
# "temperature": 0.2,
|
175 |
# "top_k": 50
|
|
|
176 |
# }
|
177 |
# })
|
178 |
|
|
|
183 |
# else:
|
184 |
# return f"Error: {response.status_code}, {response.text}"
|
185 |
|
186 |
+
# def fallback_translate_with_gemini(code_snippet, source_lang, target_lang):
|
187 |
+
# """Fallback function using Gemini API for translation."""
|
188 |
+
# prompt = f"""You are a code translation expert. Convert the following {source_lang} code to {target_lang}:
|
189 |
+
|
190 |
+
# {code_snippet}
|
191 |
+
|
192 |
+
# Ensure the translation is accurate and follows {target_lang} best practices.
|
193 |
+
# Do not give any explaination. only give the translated code.
|
194 |
+
# """
|
195 |
+
# try:
|
196 |
+
# model = genai.GenerativeModel("gemini-1.5-pro")
|
197 |
+
# response = model.generate_content(prompt)
|
198 |
+
# return response.text.strip() if response else "Translation failed."
|
199 |
+
# except Exception as e:
|
200 |
+
# return f"Gemini API Error: {str(e)}"
|
201 |
+
|
202 |
# # Streamlit UI
|
203 |
+
# st.title("π Programming Language Translator")
|
204 |
# st.write("Translate code between different programming languages using AI.")
|
205 |
|
206 |
# languages = ["Python", "Java", "C++", "C"]
|
|
|
209 |
# target_lang = st.selectbox("Select target language", languages)
|
210 |
# code_input = st.text_area("Enter your code here:", height=200)
|
211 |
|
212 |
+
# # Initialize session state
|
213 |
+
# if "translate_attempts" not in st.session_state:
|
214 |
+
# st.session_state.translate_attempts = 0
|
215 |
+
# st.session_state.translated_code = ""
|
216 |
+
|
217 |
# if st.button("Translate"):
|
218 |
# if code_input.strip():
|
219 |
+
# st.session_state.translate_attempts += 1
|
220 |
# with st.spinner("Translating..."):
|
221 |
+
# if st.session_state.translate_attempts == 1:
|
222 |
+
# # First attempt using the pretrained model
|
223 |
+
# st.session_state.translated_code = translate_code(code_input, source_lang, target_lang)
|
224 |
+
# else:
|
225 |
+
# # Second attempt uses Gemini API
|
226 |
+
# st.session_state.translated_code = fallback_translate_with_gemini(code_input, source_lang, target_lang)
|
227 |
+
|
228 |
+
# st.subheader("Translated Code:")
|
229 |
+
# st.code(st.session_state.translated_code, language=target_lang.lower())
|
230 |
# else:
|
231 |
# st.warning("β οΈ Please enter some code before translating.")
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
# # V1 without gemini api
|
250 |
+
|
251 |
+
# # import streamlit as st
|
252 |
+
# # import requests
|
253 |
+
# # import os # Import os to access environment variables
|
254 |
+
|
255 |
+
# # # Get API token from environment variable
|
256 |
+
# # API_TOKEN = os.getenv("HF_API_TOKEN")
|
257 |
+
|
258 |
+
|
259 |
+
# # # Change MODEL_ID to a better model
|
260 |
+
# # MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended)
|
261 |
+
# # # MODEL_ID = "bigcode/starcoder2-15b" # StarCoder2
|
262 |
+
# # # MODEL_ID = "bigcode/starcoder"
|
263 |
+
# # API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
264 |
+
# # HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
|
265 |
+
|
266 |
+
# # def translate_code(code_snippet, source_lang, target_lang):
|
267 |
+
# # """Translate code using Hugging Face API securely."""
|
268 |
+
# # prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
|
269 |
+
|
270 |
+
# # response = requests.post(API_URL, headers=HEADERS, json={
|
271 |
+
# # "inputs": prompt,
|
272 |
+
# # "parameters": {
|
273 |
+
# # "max_new_tokens": 150,
|
274 |
+
# # "temperature": 0.2,
|
275 |
+
# # "top_k": 50
|
276 |
+
# # # "stop": ["\n\n", "#", "//", "'''"]
|
277 |
+
# # }
|
278 |
+
# # })
|
279 |
+
|
280 |
+
# # if response.status_code == 200:
|
281 |
+
# # generated_text = response.json()[0]["generated_text"]
|
282 |
+
# # translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
|
283 |
+
# # return translated_code
|
284 |
+
# # else:
|
285 |
+
# # return f"Error: {response.status_code}, {response.text}"
|
286 |
+
|
287 |
+
# # # Streamlit UI
|
288 |
+
# # st.title("π Code Translator using StarCoder")
|
289 |
+
# # st.write("Translate code between different programming languages using AI.")
|
290 |
+
|
291 |
+
# # languages = ["Python", "Java", "C++", "C"]
|
292 |
+
|
293 |
+
# # source_lang = st.selectbox("Select source language", languages)
|
294 |
+
# # target_lang = st.selectbox("Select target language", languages)
|
295 |
+
# # code_input = st.text_area("Enter your code here:", height=200)
|
296 |
+
|
297 |
+
# # if st.button("Translate"):
|
298 |
+
# # if code_input.strip():
|
299 |
+
# # with st.spinner("Translating..."):
|
300 |
+
# # translated_code = translate_code(code_input, source_lang, target_lang)
|
301 |
+
# # st.subheader("Translated Code:")
|
302 |
+
# # st.code(translated_code, language=target_lang.lower())
|
303 |
+
# # else:
|
304 |
+
# # st.warning("β οΈ Please enter some code before translating.")
|