Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,22 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
-
import os #
|
|
|
4 |
|
5 |
-
#
|
6 |
-
|
|
|
7 |
|
8 |
-
|
9 |
-
# Change MODEL_ID to a better model
|
10 |
MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended)
|
11 |
-
# MODEL_ID = "bigcode/starcoder2-15b" # StarCoder2
|
12 |
-
# MODEL_ID = "bigcode/starcoder"
|
13 |
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
14 |
-
HEADERS = {"Authorization": f"Bearer {
|
|
|
|
|
|
|
15 |
|
16 |
def translate_code(code_snippet, source_lang, target_lang):
|
17 |
-
"""Translate code using Hugging Face API
|
18 |
prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
|
19 |
|
20 |
response = requests.post(API_URL, headers=HEADERS, json={
|
@@ -23,7 +25,6 @@ def translate_code(code_snippet, source_lang, target_lang):
|
|
23 |
"max_new_tokens": 150,
|
24 |
"temperature": 0.2,
|
25 |
"top_k": 50
|
26 |
-
# "stop": ["\n\n", "#", "//", "'''"]
|
27 |
}
|
28 |
})
|
29 |
|
@@ -34,8 +35,23 @@ def translate_code(code_snippet, source_lang, target_lang):
|
|
34 |
else:
|
35 |
return f"Error: {response.status_code}, {response.text}"
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# Streamlit UI
|
38 |
-
st.title("π Code Translator
|
39 |
st.write("Translate code between different programming languages using AI.")
|
40 |
|
41 |
languages = ["Python", "Java", "C++", "C"]
|
@@ -44,11 +60,96 @@ source_lang = st.selectbox("Select source language", languages)
|
|
44 |
target_lang = st.selectbox("Select target language", languages)
|
45 |
code_input = st.text_area("Enter your code here:", height=200)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
47 |
if st.button("Translate"):
|
48 |
if code_input.strip():
|
|
|
49 |
with st.spinner("Translating..."):
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
else:
|
54 |
st.warning("β οΈ Please enter some code before translating.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
+
import os # To access environment variables
|
4 |
+
import google.generativeai as genai # Import Gemini API
|
5 |
|
6 |
+
# Load API keys from environment variables
|
7 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
8 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
9 |
|
10 |
+
# Set up Hugging Face API
|
|
|
11 |
MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended)
|
|
|
|
|
12 |
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
13 |
+
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
14 |
+
|
15 |
+
# Initialize Gemini API
|
16 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
17 |
|
18 |
def translate_code(code_snippet, source_lang, target_lang):
|
19 |
+
"""Translate code using Hugging Face API."""
|
20 |
prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
|
21 |
|
22 |
response = requests.post(API_URL, headers=HEADERS, json={
|
|
|
25 |
"max_new_tokens": 150,
|
26 |
"temperature": 0.2,
|
27 |
"top_k": 50
|
|
|
28 |
}
|
29 |
})
|
30 |
|
|
|
35 |
else:
|
36 |
return f"Error: {response.status_code}, {response.text}"
|
37 |
|
38 |
+
def fallback_translate_with_gemini(code_snippet, source_lang, target_lang):
|
39 |
+
"""Fallback function using Gemini API for translation."""
|
40 |
+
prompt = f"""You are a code translation expert. Convert the following {source_lang} code to {target_lang}:
|
41 |
+
|
42 |
+
{code_snippet}
|
43 |
+
|
44 |
+
Ensure the translation is accurate and follows {target_lang} best practices.
|
45 |
+
"""
|
46 |
+
try:
|
47 |
+
model = genai.GenerativeModel("gemini-pro")
|
48 |
+
response = model.generate_content(prompt)
|
49 |
+
return response.text.strip() if response else "Translation failed."
|
50 |
+
except Exception as e:
|
51 |
+
return f"Gemini API Error: {str(e)}"
|
52 |
+
|
53 |
# Streamlit UI
|
54 |
+
st.title("π Code Translator with Gemini AI")
|
55 |
st.write("Translate code between different programming languages using AI.")
|
56 |
|
57 |
languages = ["Python", "Java", "C++", "C"]
|
|
|
60 |
target_lang = st.selectbox("Select target language", languages)
|
61 |
code_input = st.text_area("Enter your code here:", height=200)
|
62 |
|
63 |
+
# Initialize session state
|
64 |
+
if "translate_attempts" not in st.session_state:
|
65 |
+
st.session_state.translate_attempts = 0
|
66 |
+
st.session_state.translated_code = ""
|
67 |
+
|
68 |
if st.button("Translate"):
|
69 |
if code_input.strip():
|
70 |
+
st.session_state.translate_attempts += 1
|
71 |
with st.spinner("Translating..."):
|
72 |
+
if st.session_state.translate_attempts == 1:
|
73 |
+
# First attempt using the pretrained model
|
74 |
+
st.session_state.translated_code = translate_code(code_input, source_lang, target_lang)
|
75 |
+
else:
|
76 |
+
# Second attempt uses Gemini API
|
77 |
+
st.session_state.translated_code = fallback_translate_with_gemini(code_input, source_lang, target_lang)
|
78 |
+
|
79 |
+
st.subheader("Translated Code:")
|
80 |
+
st.code(st.session_state.translated_code, language=target_lang.lower())
|
81 |
else:
|
82 |
st.warning("β οΈ Please enter some code before translating.")
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
# V1 without gemini api
|
101 |
+
|
102 |
+
# import streamlit as st
|
103 |
+
# import requests
|
104 |
+
# import os # Import os to access environment variables
|
105 |
+
|
106 |
+
# # Get API token from environment variable
|
107 |
+
# API_TOKEN = os.getenv("HF_API_TOKEN")
|
108 |
+
|
109 |
+
|
110 |
+
# # Change MODEL_ID to a better model
|
111 |
+
# MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended)
|
112 |
+
# # MODEL_ID = "bigcode/starcoder2-15b" # StarCoder2
|
113 |
+
# # MODEL_ID = "bigcode/starcoder"
|
114 |
+
# API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
115 |
+
# HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
|
116 |
+
|
117 |
+
# def translate_code(code_snippet, source_lang, target_lang):
|
118 |
+
# """Translate code using Hugging Face API securely."""
|
119 |
+
# prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
|
120 |
+
|
121 |
+
# response = requests.post(API_URL, headers=HEADERS, json={
|
122 |
+
# "inputs": prompt,
|
123 |
+
# "parameters": {
|
124 |
+
# "max_new_tokens": 150,
|
125 |
+
# "temperature": 0.2,
|
126 |
+
# "top_k": 50
|
127 |
+
# # "stop": ["\n\n", "#", "//", "'''"]
|
128 |
+
# }
|
129 |
+
# })
|
130 |
+
|
131 |
+
# if response.status_code == 200:
|
132 |
+
# generated_text = response.json()[0]["generated_text"]
|
133 |
+
# translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
|
134 |
+
# return translated_code
|
135 |
+
# else:
|
136 |
+
# return f"Error: {response.status_code}, {response.text}"
|
137 |
+
|
138 |
+
# # Streamlit UI
|
139 |
+
# st.title("π Code Translator using StarCoder")
|
140 |
+
# st.write("Translate code between different programming languages using AI.")
|
141 |
+
|
142 |
+
# languages = ["Python", "Java", "C++", "C"]
|
143 |
+
|
144 |
+
# source_lang = st.selectbox("Select source language", languages)
|
145 |
+
# target_lang = st.selectbox("Select target language", languages)
|
146 |
+
# code_input = st.text_area("Enter your code here:", height=200)
|
147 |
+
|
148 |
+
# if st.button("Translate"):
|
149 |
+
# if code_input.strip():
|
150 |
+
# with st.spinner("Translating..."):
|
151 |
+
# translated_code = translate_code(code_input, source_lang, target_lang)
|
152 |
+
# st.subheader("Translated Code:")
|
153 |
+
# st.code(translated_code, language=target_lang.lower())
|
154 |
+
# else:
|
155 |
+
# st.warning("β οΈ Please enter some code before translating.")
|