Equalized
Browse files
app.py
CHANGED
@@ -22,8 +22,7 @@ model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
|
22 |
# Using CUDA for an optimal experience
|
23 |
|
24 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
-
model = model.to(device)
|
26 |
-
|
27 |
|
28 |
# Defining a custom stopping criteria class for the model's text generation
|
29 |
|
@@ -52,11 +51,11 @@ def generate_response(user_input, history):
|
|
52 |
generate_kwargs = dict(
|
53 |
**model_inputs,
|
54 |
streamer=streamer,
|
55 |
-
max_new_tokens=
|
56 |
-
do_sample=
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
num_beams=1,
|
61 |
stopping_criteria=StoppingCriteriaList([stop])
|
62 |
)
|
@@ -389,5 +388,4 @@ with gr.Blocks(css=css, fill_width=True, title="LogicLinkV5") as demo:
|
|
389 |
queue=False
|
390 |
)
|
391 |
|
392 |
-
demo.queue().launch(share=True, debug=True)
|
393 |
-
model.eval()
|
|
|
22 |
# Using CUDA for an optimal experience
|
23 |
|
24 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
+
model = model.to(device)
|
|
|
26 |
|
27 |
# Defining a custom stopping criteria class for the model's text generation
|
28 |
|
|
|
51 |
generate_kwargs = dict(
|
52 |
**model_inputs,
|
53 |
streamer=streamer,
|
54 |
+
max_new_tokens=1024,
|
55 |
+
do_sample=True,
|
56 |
+
top_p=0.95,
|
57 |
+
top_k=50,
|
58 |
+
temperature=0.7,
|
59 |
num_beams=1,
|
60 |
stopping_criteria=StoppingCriteriaList([stop])
|
61 |
)
|
|
|
388 |
queue=False
|
389 |
)
|
390 |
|
391 |
+
demo.queue().launch(share=True, debug=True)
|
|