from torch import nn import torch import torch.nn.functional as F class LayerNorm(nn.Module): def __init__(self, normalized_shape, eps = 1e-5, elementwise_affine = True, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if isinstance(normalized_shape, int): normalized_shape = [normalized_shape] self.normalized_shape = normalized_shape # type: ignore[arg-type] self.eps = eps self.elementwise_affine = elementwise_affine if self.elementwise_affine: self.weight = nn.parameter.Parameter(torch.ones(self.normalized_shape, **factory_kwargs)) self.bias = nn.parameter.Parameter(torch.zeros(self.normalized_shape, **factory_kwargs)) else: self.register_parameter('weight', None) self.register_parameter('bias', None) def forward(self, input): orig_type = input.dtype ret = F.layer_norm(input.type(torch.float32), self.normalized_shape, self.weight.type(torch.float32), self.bias.type(torch.float32), self.eps) return ret.type(orig_type) class RMSNorm(torch.nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()).type_as(x) return output * self.weight