File size: 11,133 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from pytorch3d.renderer import (
    BlendParams, blending, look_at_view_transform, FoVOrthographicCameras,
    PointLights, RasterizationSettings, PointsRasterizationSettings,
    PointsRenderer, AlphaCompositor, PointsRasterizer, MeshRenderer,
    MeshRasterizer, SoftPhongShader, SoftSilhouetteShader, TexturesVertex)
from pytorch3d.renderer.mesh import TexturesVertex
from pytorch3d.structures import Meshes, Pointclouds

import torch
import numpy as np
import math
import cv2


class cleanShader(torch.nn.Module):
    def __init__(self, device="cpu", cameras=None, blend_params=None):
        super().__init__()
        self.cameras = cameras
        self.blend_params = blend_params if blend_params is not None else BlendParams(
        )

    def forward(self, fragments, meshes, **kwargs):
        cameras = kwargs.get("cameras", self.cameras)
        if cameras is None:
            msg = "Cameras must be specified either at initialization \
                or in the forward pass of TexturedSoftPhongShader"

            raise ValueError(msg)

        # get renderer output
        blend_params = kwargs.get("blend_params", self.blend_params)
        texels = meshes.sample_textures(fragments)
        images = blending.softmax_rgb_blend(texels,
                                            fragments,
                                            blend_params,
                                            znear=-256,
                                            zfar=256)

        return images


class Render:
    def __init__(self, size=512, device=torch.device("cuda:0")):
        self.device = device
        self.mesh_y_center = 100.0
        self.dis = 100.0
        self.scale = 1.0
        self.size = size
        self.cam_pos = [(0, 100, 100)]

        self.mesh = None
        self.pcd = None
        self.renderer = None
        self.meshRas = None

    def get_camera(self, cam_id):
        # at

        R, T = look_at_view_transform(eye=[self.cam_pos[cam_id]],
                                      at=((0, self.mesh_y_center, 0),),
                                      up=((0, 1, 0),))

        camera = FoVOrthographicCameras(device=self.device,
                                        R=R,
                                        T=T,
                                        znear=100.0,
                                        zfar=-100.0,
                                        max_y=100.0,
                                        min_y=-100.0,
                                        max_x=100.0,
                                        min_x=-100.0,
                                        scale_xyz=(self.scale * np.ones(3),))
        return camera

    def init_renderer(self, camera, type='clean_mesh', bg='gray'):

        if 'mesh' in type:
            # rasterizer
            self.raster_settings_mesh = RasterizationSettings(
                image_size=self.size,
                blur_radius=np.log(1.0 / 1e-4) * 1e-7,
                faces_per_pixel=30,
            )
            self.meshRas = MeshRasterizer(cameras=camera,
                                          raster_settings=self.raster_settings_mesh)

        if bg == 'black':
            blendparam = BlendParams(1e-4, 1e-4, (0.0, 0.0, 0.0))
        elif bg == 'white':
            blendparam = BlendParams(1e-4, 1e-8, (1.0, 1.0, 1.0))
        elif bg == 'gray':
            blendparam = BlendParams(1e-4, 1e-8, (0.5, 0.5, 0.5))

        if type == 'ori_mesh':
            lights = PointLights(device=self.device,
                                 ambient_color=((0.8, 0.8, 0.8),),
                                 diffuse_color=((0.2, 0.2, 0.2),),
                                 specular_color=((0.0, 0.0, 0.0),),
                                 location=[[0.0, 200.0, 200.0]])
            self.renderer = MeshRenderer(
                rasterizer=self.meshRas,
                shader=SoftPhongShader(
                    device=self.device,
                    cameras=camera,
                    lights=lights,
                    blend_params=blendparam))

        if type == 'silhouette':
            self.raster_settings_silhouette = RasterizationSettings(
                image_size=self.size,
                blur_radius=np.log(1. / 1e-4 - 1.) * 5e-5,
                faces_per_pixel=50,
                cull_backfaces=True,
            )

            self.silhouetteRas = MeshRasterizer(
                cameras=camera, raster_settings=self.raster_settings_silhouette)
            self.renderer = MeshRenderer(rasterizer=self.silhouetteRas,
                                         shader=SoftSilhouetteShader())

        if type == 'pointcloud':
            self.raster_settings_pcd = PointsRasterizationSettings(
                image_size=self.size,
                radius=0.006,
                points_per_pixel=10)

            self.pcdRas = PointsRasterizer(cameras=camera,
                                           raster_settings=self.raster_settings_pcd)
            self.renderer = PointsRenderer(
                rasterizer=self.pcdRas,
                compositor=AlphaCompositor(background_color=(0, 0, 0)))

        if type == 'clean_mesh':
            self.renderer = MeshRenderer(
                rasterizer=self.meshRas,
                shader=cleanShader(
                    device=self.device,
                    cameras=camera,
                    blend_params=blendparam))

    def set_camera(self, verts, normalize=False):
        self.scale = 100
        self.mesh_y_center = 0
        if normalize:
            y_max = verts.max(dim=1)[0][0, 1].item()
            y_min = verts.min(dim=1)[0][0, 1].item()
            self.scale *= 0.95 / ((y_max - y_min) * 0.5 + 1e-10)
            self.mesh_y_center = (y_max + y_min) * 0.5

        self.cam_pos = [(0, self.mesh_y_center, self.dis),
                        (self.dis, self.mesh_y_center, 0),
                        (0, self.mesh_y_center, -self.dis),
                        (-self.dis, self.mesh_y_center, 0)]

    def load_mesh(self, verts, faces, verts_rgb=None, normalize=False, use_normal=False):
        """load mesh into the pytorch3d renderer

        Args:
            verts ([N,3]): verts
            faces ([N,3]): faces
            verts_rgb ([N,3]): rgb
            normalize: bool
        """

        if not torch.is_tensor(verts):
            verts = torch.tensor(verts)
        if not torch.is_tensor(faces):
            faces = torch.tensor(faces)

        if verts.ndimension() == 2:
            verts = verts.unsqueeze(0).float()
        if faces.ndimension() == 2:
            faces = faces.unsqueeze(0).long()

        verts = verts.to(self.device)
        faces = faces.to(self.device)
        self.set_camera(verts, normalize)
        self.mesh = Meshes(verts, faces).to(self.device)

        if verts_rgb is not None:
            if not torch.is_tensor(verts_rgb):
                verts_rgb = torch.as_tensor(verts_rgb)
            if verts_rgb.ndimension() == 2:
                verts_rgb = verts_rgb.unsqueeze(0).float()
            verts_rgb = verts_rgb.to(self.device)
        elif use_normal:
            verts_rgb = self.mesh.verts_normals_padded()
            verts_rgb = (verts_rgb + 1.0) * 0.5
        else:
            verts_rgb = self.mesh.verts_normals_padded()[..., 2:3].expand(-1, -1, 3)
            verts_rgb = (verts_rgb + 1.0) * 0.5
        textures = TexturesVertex(verts_features=verts_rgb)
        self.mesh.textures = textures
        return self.mesh

    def load_pcd(self, verts, verts_rgb, normalize=False):
        """load pointcloud into the pytorch3d renderer

        Args:
            verts ([B, N,3]): verts
            verts_rgb ([B, N,3]): verts colors
            normalize bool: render point cloud in center
        """
        assert verts.shape == verts_rgb.shape and len(verts.shape) == 3
        # data format convert
        if not torch.is_tensor(verts):
            verts = torch.as_tensor(verts)
        if not torch.is_tensor(verts_rgb):
            verts_rgb = torch.as_tensor(verts_rgb)

        verts = verts.float().to(self.device)
        verts_rgb = verts_rgb.float().to(self.device)

        # camera setting
        self.set_camera(verts, normalize)
        pcd = Pointclouds(points=verts, features=verts_rgb).to(self.device)
        return pcd

    def get_image(self, cam_ids=[0, 2], type='clean_mesh', bg='gray'):
        images = []
        for cam_id in range(len(self.cam_pos)):
            if cam_id in cam_ids:
                self.init_renderer(self.get_camera(cam_id), type, bg)
                rendered_img = self.renderer(self.mesh)[0, :, :, :3]
                if cam_id == 2 and len(cam_ids) == 2:
                    rendered_img = torch.flip(rendered_img, dims=[1])
                images.append(rendered_img)
        images = torch.cat(images, 1)
        return images.detach().cpu().numpy()

    def get_clean_image(self, cam_ids=[0, 2], type='clean_mesh', bg='gray'):
        images = []
        for cam_id in range(len(self.cam_pos)):
            if cam_id in cam_ids:
                self.init_renderer(self.get_camera(cam_id), type, bg)
                rendered_img = self.renderer(self.mesh)[0:1, :, :, :3]
                if cam_id == 2 and len(cam_ids) == 2:
                    rendered_img = torch.flip(rendered_img, dims=[2])
                images.append(rendered_img)
        return images

    def get_silhouette_image(self, cam_ids=[0, 2]):
        images = []
        for cam_id in range(len(self.cam_pos)):
            if cam_id in cam_ids:
                self.init_renderer(self.get_camera(cam_id), 'silhouette')
                rendered_img = self.renderer(self.mesh)[0:1, :, :, 3]
                if cam_id == 2 and len(cam_ids) == 2:
                    rendered_img = torch.flip(rendered_img, dims=[2])
                images.append(rendered_img)

        return images

    def get_image_pcd(self, pcd, cam_ids=[0, 1, 2, 3]):
        images = torch.zeros((self.size, self.size * len(cam_ids), 3)).to(self.device)
        for i, cam_id in enumerate(cam_ids):
            self.init_renderer(self.get_camera(cam_id), 'pointcloud')
            images[:, self.size * i:self.size * (i + 1), :] = self.renderer(pcd)[0, :, :, :3]

        return images.cpu().numpy()

    def get_rendered_video(self, save_path, num_angle=100, s=0):
        self.cam_pos = []

        interval = 360. / num_angle
        for i in range(num_angle):
            # for angle in range(90, 90+360, ):
            angle = (s + i * interval) % 360
            self.cam_pos.append(
                (self.dis * math.cos(np.pi / 180 * angle), self.mesh_y_center,
                 self.dis * math.sin(np.pi / 180 * angle)))

        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        video = cv2.VideoWriter(save_path, fourcc, 30, (self.size, self.size))

        for cam_id in range(len(self.cam_pos)):
            self.init_renderer(self.get_camera(cam_id), 'clean_mesh', 'gray')
            rendered_img = (self.renderer(self.mesh)[0, :, :, :3] * 255.0).detach().cpu().numpy().astype(np.uint8)

            video.write(rendered_img)

        video.release()