File size: 14,408 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os
import cv2
import torch
import numpy as np
import pymeshlab
import trimesh
from .utils import dot, safe_normalize


def length(x, eps=1e-20):
    return torch.sqrt(torch.clamp(dot(x, x), min=eps))


def compute_normal(vertices, faces):
    if not isinstance(vertices, torch.Tensor):
        vertices = torch.as_tensor(vertices).float()
    if not isinstance(faces, torch.Tensor):
        faces = torch.as_tensor(faces).long()

    i0, i1, i2 = faces[:, 0].long(), faces[:, 1].long(), faces[:, 2].long()

    v0, v1, v2 = vertices[i0, :], vertices[i1, :], vertices[i2, :]

    face_normals = torch.cross(v1 - v0, v2 - v0)

    # Splat face normals to vertices
    vn = torch.zeros_like(vertices)
    vn.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
    vn.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
    vn.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)

    # Normalize, replace zero (degenerated) normals with some default value
    vn = torch.where(dot(vn, vn) > 1e-20, vn, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device))
    vn = safe_normalize(vn)

    face_normals = safe_normalize(face_normals)
    return vn, faces


class Mesh():
    def __init__(self, v=None, f=None, vn=None, fn=None, vt=None, ft=None, albedo=None, device=None, base=None,
                 init_empty_tex=False, albedo_res=1024):
        self.v = v
        self.vn = vn
        self.vt = vt
        self.f = f
        self.fn = fn
        self.ft = ft
        self.v_tng = None
        self.f_tng = None
        # only support a single albedo
        if init_empty_tex:
            self.albedo = torch.zeros((albedo_res, albedo_res, 3), dtype=torch.float32, device=device)

        else:
            self.albedo = albedo
        self.device = device

        if isinstance(base, Mesh):
            for name in ['v', 'vn', 'vt', 'f', 'fn', 'ft', 'albedo', 'v_tng', 'f_tng']:
                if getattr(self, name) is None:
                    setattr(self, name, getattr(base, name))

    # load from obj file
    @classmethod
    def load_obj(cls, path, albedo_path=None, device=None, init_empty_tex=False, albedo_res=1024,
                 uv_path=None, normalize=False):

        assert os.path.splitext(path)[-1] == '.obj'

        mesh = cls()

        # device
        if device is None:
            device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

        mesh.device = device

        # try to find texture from mtl file
        if albedo_path is None:
            mtl_path = path.replace('.obj', '.mtl')
            if os.path.exists(mtl_path):
                with open(mtl_path, 'r') as f:
                    lines = f.readlines()
                for line in lines:
                    split_line = line.split()
                    # empty line
                    if len(split_line) == 0: continue
                    prefix = split_line[0]
                    # NOTE: simply use the first map_Kd as albedo!
                    if 'map_Kd' in prefix:
                        albedo_path = os.path.join(os.path.dirname(path), split_line[1])
                        print(f'[load_obj] use albedo from: {albedo_path}')
                        break

        if init_empty_tex or albedo_path is None or not os.path.exists(albedo_path):
            # init an empty texture
            print(f'[load_obj] init empty albedo!')
            albedo = np.ones((albedo_res, albedo_res, 3), dtype=np.float32) * np.array([0.5, 0.5, 0.5])  # default color
        else:
            albedo = cv2.imread(albedo_path, cv2.IMREAD_UNCHANGED)
            albedo = cv2.cvtColor(albedo, cv2.COLOR_BGR2RGB)
            albedo = cv2.resize(albedo, (albedo_res, albedo_res))
            albedo = albedo.astype(np.float32) / 255

        mesh.albedo = torch.tensor(albedo, dtype=torch.float32, device=device)

        # load obj
        with open(path, 'r') as f:
            lines = f.readlines()

        def parse_f_v(fv):
            # pass in a vertex term of a face, return {v, vt, vn} (-1 if not provided)
            # supported forms:
            # f v1 v2 v3
            # f v1/vt1 v2/vt2 v3/vt3
            # f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3
            # f v1//vn1 v2//vn2 v3//vn3
            xs = [int(x) - 1 if x != '' else -1 for x in fv.split('/')]
            xs.extend([-1] * (3 - len(xs)))
            return xs[0], xs[1], xs[2]

        # NOTE: we ignore usemtl, and assume the mesh ONLY uses one material (first in mtl)
        vertices, texcoords, normals = [], [], []
        faces, tfaces, nfaces = [], [], []
        for line in lines:
            split_line = line.split()
            # empty line
            if len(split_line) == 0: continue
            # v/vn/vt
            prefix = split_line[0].lower()
            if prefix == 'v':
                vertices.append([float(v) for v in split_line[1:]])
            elif prefix == 'vn':
                normals.append([float(v) for v in split_line[1:]])
            elif prefix == 'vt':
                val = [float(v) for v in split_line[1:]]
                texcoords.append([val[0], 1.0 - val[1]])
            elif prefix == 'f':
                vs = split_line[1:]
                nv = len(vs)
                v0, t0, n0 = parse_f_v(vs[0])
                for i in range(nv - 2):  # triangulate (assume vertices are ordered)
                    v1, t1, n1 = parse_f_v(vs[i + 1])
                    v2, t2, n2 = parse_f_v(vs[i + 2])
                    faces.append([v0, v1, v2])
                    tfaces.append([t0, t1, t2])
                    nfaces.append([n0, n1, n2])

        mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device)
        mesh.vt = torch.tensor(texcoords, dtype=torch.float32, device=device) if len(texcoords) > 0 else None
        mesh.vn = torch.tensor(normals, dtype=torch.float32, device=device) if len(normals) > 0 else None

        mesh.f = torch.tensor(faces, dtype=torch.int32, device=device)
        mesh.ft = torch.tensor(tfaces, dtype=torch.int32, device=device) if texcoords is not None else None
        mesh.fn = torch.tensor(nfaces, dtype=torch.int32, device=device) if normals is not None else None

        # auto-normalize
        # Skip this
        if normalize:
            mesh.auto_size()

        print(f'[load_obj] v: {mesh.v.shape}, f: {mesh.f.shape}')

        # auto-fix normal
        if mesh.vn is None:
            mesh.auto_normal()

        print(f'[load_obj] vn: {mesh.vn.shape}, fn: {mesh.fn.shape}')

        # auto-fix texture
        if mesh.vt is None:
            mesh.auto_uv(cache_path=uv_path)

        print(f'[load_obj] vt: {mesh.vt.shape}, ft: {mesh.ft.shape}')

        return mesh

    @classmethod
    def load_albedo(cls, albedo_path):
        albedo = cv2.imread(albedo_path, cv2.IMREAD_UNCHANGED)
        albedo = cv2.cvtColor(albedo, cv2.COLOR_BGR2RGB)
        albedo = albedo.astype(np.float32) / 255
        return albedo

    # aabb
    def aabb(self):
        return torch.min(self.v, dim=0).values, torch.max(self.v, dim=0).values

    # unit size
    @torch.no_grad()
    def auto_size(self):  # to [-0.5, 0.5]
        vmin, vmax = self.aabb()
        scale = 1 / torch.max(vmax - vmin).item()
        self.v = self.v - (vmax + vmin) / 2  # Center mesh on origin
        self.v = self.v * scale

    def auto_normal(self):
        self.vn, self.fn = compute_normal(self.v, self.f)
        self.fn = self.f

    @torch.no_grad()
    def auto_uv(self, cache_path="", v=None, f=None):
        # try to load cache
        if cache_path is not None and os.path.exists(cache_path):
            data = np.load(cache_path)
            vt_np, ft_np = data['vt'], data['ft']
        else:
            import xatlas
            if v is not None and f is not None:
                v_np = v.cpu().numpy()
                f_np = f.int().cpu().numpy()
            else:
                v_np = self.v.cpu().numpy()
                f_np = self.f.int().cpu().numpy()
            atlas = xatlas.Atlas()
            atlas.add_mesh(v_np, f_np)
            chart_options = xatlas.ChartOptions()
            chart_options.max_iterations = 4
            atlas.generate(chart_options=chart_options)
            vmapping, ft_np, vt_np = atlas[0]  # [N], [M, 3], [N, 2]

        # save to cache
        # np.savez(cache_path, vt=vt_np, ft=ft_np)

        vt = torch.from_numpy(vt_np.astype(np.float32)).to(self.device)
        ft = torch.from_numpy(ft_np.astype(np.int32)).to(self.device)

        self.vt = vt
        self.ft = ft
        return vt, ft

    def compute_tangents(self):
        vn_idx = [None] * 3
        pos = [None] * 3
        tex = [None] * 3
        for i in range(0, 3):
            pos[i] = self.v[self.f[:, i]]
            tex[i] = self.vt[self.ft[:, i]]
            vn_idx[i] = self.fn[:, i]

        tangents = torch.zeros_like(self.vn)
        tansum = torch.zeros_like(self.vn)

        # Compute tangent space for each triangle
        uve1 = tex[1] - tex[0]
        uve2 = tex[2] - tex[0]
        pe1 = pos[1] - pos[0]
        pe2 = pos[2] - pos[0]

        nom = (pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2])
        denom = (uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1])

        # Avoid division by zero for degenerated texture coordinates
        tang = nom / torch.where(denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6))

        # Update all 3 vertices
        for i in range(0, 3):
            idx = vn_idx[i][:, None].repeat(1, 3)
            tangents.scatter_add_(0, idx, tang)  # tangents[n_i] = tangents[n_i] + tang
            tansum.scatter_add_(0, idx, torch.ones_like(tang))  # tansum[n_i] = tansum[n_i] + 1
        tangents = tangents / tansum

        # Normalize and make sure tangent is perpendicular to normal
        tangents = safe_normalize(tangents)
        tangents = safe_normalize(tangents - dot(tangents, self.vn) * self.vn)

        if torch.is_anomaly_enabled():
            assert torch.all(torch.isfinite(tangents))
        self.v_tng = tangents
        self.f_tng = self.fn

    # write to obj file
    def write(self, path):

        mtl_path = path.replace('.obj', '.mtl')
        albedo_path = path.replace('.obj', '_albedo.png')

        v_np = self.v.cpu().numpy()
        vt_np = self.vt.cpu().numpy() if self.vt is not None else None
        vn_np = self.vn.cpu().numpy() if self.vn is not None else None
        f_np = self.f.cpu().numpy()
        ft_np = self.ft.cpu().numpy() if self.ft is not None else None
        fn_np = self.fn.cpu().numpy() if self.fn is not None else None

        with open(path, "w") as fp:
            fp.write(f'mtllib {os.path.basename(mtl_path)} \n')

            for v in v_np:
                fp.write(f'v {v[0]} {v[1]} {v[2]} \n')

            for v in vt_np:
                fp.write(f'vt {v[0]} {1 - v[1]} \n')

            for v in vn_np:
                fp.write(f'vn {v[0]} {v[1]} {v[2]} \n')

            fp.write(f'usemtl defaultMat \n')
            for i in range(len(f_np)):
                fp.write(
                    f'f {f_np[i, 0] + 1}/{ft_np[i, 0] + 1 if ft_np is not None else ""}/{fn_np[i, 0] + 1 if fn_np is not None else ""} \
                             {f_np[i, 1] + 1}/{ft_np[i, 1] + 1 if ft_np is not None else ""}/{fn_np[i, 1] + 1 if fn_np is not None else ""} \
                             {f_np[i, 2] + 1}/{ft_np[i, 2] + 1 if ft_np is not None else ""}/{fn_np[i, 2] + 1 if fn_np is not None else ""} \n')

        with open(mtl_path, "w") as fp:
            fp.write(f'newmtl defaultMat \n')
            fp.write(f'Ka 1 1 1 \n')
            fp.write(f'Kd 1 1 1 \n')
            fp.write(f'Ks 0 0 0 \n')
            fp.write(f'Tr 1 \n')
            fp.write(f'illum 1 \n')
            fp.write(f'Ns 0 \n')
            fp.write(f'map_Kd {os.path.basename(albedo_path)} \n')

        albedo = self.albedo.detach().cpu().numpy()
        albedo = (albedo * 255).astype(np.uint8)
        cv2.imwrite(albedo_path, cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR))

    def set_albedo(self, albedo):
        self.albedo = torch.sigmoid(albedo)

    def set_uv(self, vt, ft):
        self.vt = vt
        self.ft = ft

    def auto_uv_face_att(self):
        import kaolin as kal
        self.uv_face_att = kal.ops.mesh.index_vertices_by_faces(
            self.vt.unsqueeze(0),
            self.ft.long())


def save_obj_mesh(mesh_path, verts, faces=None):
    file = open(mesh_path, 'w')

    for v in verts:
        file.write('v %.4f %.4f %.4f\n' % (v[0], v[1], v[2]))

    if faces is not None:
        for f in faces:
            f_plus = f + 1
            file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2]))
    file.close()


def keep_largest(mesh):
    mesh_lst = mesh.split(only_watertight=False)
    keep_mesh = mesh_lst[0]
    for mesh in mesh_lst:
        if mesh.vertices.shape[0] > keep_mesh.vertices.shape[0]:
            keep_mesh = mesh
    return keep_mesh


def poisson(mesh, obj_path):
    mesh.export(obj_path)
    ms = pymeshlab.MeshSet()
    ms.load_new_mesh(obj_path)
    ms.set_verbosity(False)
    ms.generate_surface_reconstruction_screened_poisson(depth=10, preclean=True)
    ms.set_current_mesh(1)
    ms.save_current_mesh(obj_path)

    new_meshes = trimesh.load(obj_path)
    new_mesh_lst = new_meshes.split(only_watertight=False)
    comp_num = [new_mesh.vertices.shape[0] for new_mesh in new_mesh_lst]

    return new_mesh_lst[comp_num.index(max(comp_num))]


def mesh_clean(mesh, save_path=None):
    """ clean mesh """
    cc = mesh.split(only_watertight=False)
    out_mesh = cc[0]
    bbox = out_mesh.bounds
    height = bbox[1, 0] - bbox[0, 0]
    for c in cc:
        bbox = c.bounds
        if height < bbox[1, 0] - bbox[0, 0]:
            height = bbox[1, 0] - bbox[0, 0]
            out_mesh = c
    if save_path is not None:
        out_mesh.export(save_path)
    return out_mesh


def normalize_vert(vertices, return_cs=False):
    if isinstance(vertices, np.ndarray):
        vmax, vmin = vertices.max(0), vertices.min(0)
        center = (vmax + vmin) * 0.5
        scale = 1. / np.max(vmax - vmin)
    else:  # torch.tensor
        vmax, vmin = vertices.max(0)[0], vertices.min(0)[0]
        center = (vmax + vmin) * 0.5
        scale = 1. / torch.max(vmax - vmin)
    if return_cs:
        return (vertices - center) * scale, center, scale
    return (vertices - center) * scale