Spaces:
Runtime error
Runtime error
File size: 19,904 Bytes
c3d0293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
import torch
import kaolin as kal
import numpy as np
from pathlib import Path
import numpy as np
import pymeshlab as pml
if torch.cuda.is_available():
device = torch.device("cuda:0")
torch.cuda.set_device(device)
else:
device = torch.device("cpu")
def get_camera_from_view(elev, azim, r=3.0):
x = r * torch.cos(azim) * torch.sin(elev)
y = r * torch.sin(azim) * torch.sin(elev)
z = r * torch.cos(elev)
# print(elev,azim,x,y,z)
pos = torch.tensor([x, y, z]).unsqueeze(0)
look_at = -pos
direction = torch.tensor([0.0, 1.0, 0.0]).unsqueeze(0)
camera_proj = kal.render.camera.generate_transformation_matrix(pos, look_at, direction)
return camera_proj
def get_camera_from_view2(elev, azim, r=3.0):
x = r * torch.cos(elev) * torch.cos(azim)
y = r * torch.sin(elev)
z = r * torch.cos(elev) * torch.sin(azim)
# print(elev,azim,x,y,z)
pos = torch.tensor([x, y, z]).unsqueeze(0)
look_at = -pos
direction = torch.tensor([0.0, 1.0, 0.0]).unsqueeze(0)
camera_proj = kal.render.camera.generate_transformation_matrix(pos, look_at, direction)
return camera_proj
def get_homogenous_coordinates(V):
N, D = V.shape
bottom = torch.ones(N, device=device).unsqueeze(1)
return torch.cat([V, bottom], dim=1)
def apply_affine(verts, A):
verts = verts.to(device)
verts = get_homogenous_coordinates(verts)
A = torch.cat([A, torch.tensor([0.0, 0.0, 0.0, 1.0], device=device).unsqueeze(0)], dim=0)
transformed_verts = A @ verts.T
transformed_verts = transformed_verts[:-1]
return transformed_verts.T
def standardize_mesh(mesh):
verts = mesh.vertices
center = verts.mean(dim=0)
verts -= center
scale = torch.std(torch.norm(verts, p=2, dim=1))
verts /= scale
mesh.vertices = verts
return mesh
def normalize_mesh(mesh):
verts = mesh.vertices
# Compute center of bounding box
# center = torch.mean(torch.column_stack([torch.max(verts, dim=0)[0], torch.min(verts, dim=0)[0]]))
center = verts.mean(dim=0)
verts = verts - center
scale = torch.max(torch.norm(verts, p=2, dim=1))
verts = verts / scale
mesh.vertices = verts
return mesh
def get_texture_map_from_color(mesh, color, H=224, W=224):
num_faces = mesh.faces.shape[0]
texture_map = torch.zeros(1, H, W, 3).to(device)
texture_map[:, :, :] = color
return texture_map.permute(0, 3, 1, 2)
def get_face_attributes_from_color(mesh, color):
num_faces = mesh.faces.shape[0]
face_attributes = torch.zeros(1, num_faces, 3, 3).to(device)
face_attributes[:, :, :] = color
return face_attributes
def sample_bary(faces, vertices):
num_faces = faces.shape[0]
num_vertices = vertices.shape[0]
# get random barycentric for each face TODO: improve sampling
A = torch.randn(num_faces)
B = torch.randn(num_faces) * (1 - A)
C = 1 - (A + B)
bary = torch.vstack([A, B, C]).to(device)
# compute xyz of new vertices and new uvs (if mesh has them)
new_vertices = torch.zeros(num_faces, 3).to(device)
new_uvs = torch.zeros(num_faces, 2).to(device)
face_verts = kal.ops.mesh.index_vertices_by_faces(vertices.unsqueeze(0), faces)
for f in range(num_faces):
new_vertices[f] = bary[:, f] @ face_verts[:, f]
new_vertices = torch.cat([vertices, new_vertices])
return new_vertices
def _add_vertices(mesh):
faces = torch.as_tensor(mesh.faces)
vertices = torch.as_tensor(mesh.vertices)
num_faces = faces.shape[0]
num_vertices = vertices.shape[0]
# get random barycentric for each face TODO: improve sampling
A = torch.randn(num_faces)
B = torch.randn(num_faces) * (1 - A)
C = 1 - (A + B)
bary = torch.vstack([A, B, C]).to(device)
# compute xyz of new vertices and new uvs (if mesh has them)
new_vertices = torch.zeros(num_faces, 3).to(device)
new_uvs = torch.zeros(num_faces, 2).to(device)
face_verts = kal.ops.mesh.index_vertices_by_faces(vertices.unsqueeze(0), faces)
face_uvs = mesh.face_uvs
for f in range(num_faces):
new_vertices[f] = bary[:, f] @ face_verts[:, f]
if face_uvs is not None:
new_uvs[f] = bary[:, f] @ face_uvs[:, f]
# update face and face_uvs of mesh
new_vertices = torch.cat([vertices, new_vertices])
new_faces = []
new_face_uvs = []
new_vertex_normals = []
for i in range(num_faces):
old_face = faces[i]
a, b, c = old_face[0], old_face[1], old_face[2]
d = num_vertices + i
new_faces.append(torch.tensor([a, b, d]).to(device))
new_faces.append(torch.tensor([a, d, c]).to(device))
new_faces.append(torch.tensor([d, b, c]).to(device))
if face_uvs is not None:
old_face_uvs = face_uvs[0, i]
a, b, c = old_face_uvs[0], old_face_uvs[1], old_face_uvs[2]
d = new_uvs[i]
new_face_uvs.append(torch.vstack([a, b, d]))
new_face_uvs.append(torch.vstack([a, d, c]))
new_face_uvs.append(torch.vstack([d, b, c]))
if mesh.face_normals is not None:
new_vertex_normals.append(mesh.face_normals[i])
else:
e1 = vertices[b] - vertices[a]
e2 = vertices[c] - vertices[a]
norm = torch.cross(e1, e2)
norm /= torch.norm(norm)
# Double check sign against existing vertex normals
if torch.dot(norm, mesh.vertex_normals[a]) < 0:
norm = -norm
new_vertex_normals.append(norm)
vertex_normals = torch.cat([mesh.vertex_normals, torch.stack(new_vertex_normals)])
if face_uvs is not None:
new_face_uvs = torch.vstack(new_face_uvs).unsqueeze(0).view(1, 3 * num_faces, 3, 2)
new_faces = torch.vstack(new_faces)
return new_vertices, new_faces, vertex_normals, new_face_uvs
def get_rgb_per_vertex(vertices, faces, face_rgbs):
num_vertex = vertices.shape[0]
num_faces = faces.shape[0]
vertex_color = torch.zeros(num_vertex, 3)
for v in range(num_vertex):
for f in range(num_faces):
face = num_faces[f]
if v in face:
vertex_color[v] = face_rgbs[f]
return face_rgbs
def get_barycentric(p, faces):
# faces num_points x 3 x 3
# p num_points x 3
# source: https://gamedev.stackexchange.com/questions/23743/whats-the-most-efficient-way-to-find-barycentric-coordinates
a, b, c = faces[:, 0], faces[:, 1], faces[:, 2]
v0, v1, v2 = b - a, c - a, p - a
d00 = torch.sum(v0 * v0, dim=1)
d01 = torch.sum(v0 * v1, dim=1)
d11 = torch.sum(v1 * v1, dim=1)
d20 = torch.sum(v2 * v0, dim=1)
d21 = torch.sum(v2 * v1, dim=1)
denom = d00 * d11 - d01 * d01
v = (d11 * d20 - d01 * d21) / denom
w = (d00 * d21 - d01 * d20) / denom
u = 1 - (w + v)
return torch.vstack([u, v, w]).T
def get_uv_assignment(num_faces):
M = int(np.ceil(np.sqrt(num_faces)))
uv_map = torch.zeros(1, num_faces, 3, 2).to(device)
px, py = 0, 0
count = 0
for i in range(M):
px = 0
for j in range(M):
uv_map[:, count] = torch.tensor([[px, py],
[px + 1, py],
[px + 1, py + 1]])
px += 2
count += 1
if count >= num_faces:
hw = torch.max(uv_map.view(-1, 2), dim=0)[0]
uv_map = (uv_map - hw / 2.0) / (hw / 2)
return uv_map
py += 2
def get_texture_visual(res, nt, mesh):
faces_vt = kal.ops.mesh.index_vertices_by_faces(mesh.vertices.unsqueeze(0), mesh.faces).squeeze(0)
# as to not include encpoint, gen res+1 points and take first res
uv = torch.cartesian_prod(torch.linspace(-1, 1, res + 1)[:-1], torch.linspace(-1, 1, res + 1))[:-1].to(device)
image = torch.zeros(res, res, 3).to(device)
# image[:,:,:] = torch.tensor([0.0,1.0,0.0]).to(device)
image = image.permute(2, 0, 1)
num_faces = mesh.faces.shape[0]
uv_map = get_uv_assignment(num_faces).squeeze(0)
zero = torch.tensor([0.0, 0.0, 0.0]).to(device)
one = torch.tensor([1.0, 1.0, 1.0]).to(device)
for face in range(num_faces):
bary = get_barycentric(uv, uv_map[face].repeat(len(uv), 1, 1))
maskA = torch.logical_and(bary[:, 0] >= 0.0, bary[:, 0] <= 1.0)
maskB = torch.logical_and(bary[:, 1] >= 0.0, bary[:, 1] <= 1.0)
maskC = torch.logical_and(bary[:, 2] >= 0.0, bary[:, 2] <= 1.0)
mask = torch.logical_and(maskA, maskB)
mask = torch.logical_and(maskC, mask)
inside_triangle = bary[mask]
inside_triangle_uv = inside_triangle @ uv_map[face]
inside_triangle_xyz = inside_triangle @ faces_vt[face]
inside_triangle_rgb = nt(inside_triangle_xyz)
pixels = (inside_triangle_uv + 1.0) / 2.0
pixels = pixels * res
pixels = torch.floor(pixels).type(torch.int64)
image[:, pixels[:, 0], pixels[:, 1]] = inside_triangle_rgb.T
return image
# Get rotation matrix about vector through origin
def getRotMat(axis, theta):
"""
axis: np.array, normalized vector
theta: radians
"""
import math
axis = axis / np.linalg.norm(axis)
cprod = np.array([[0, -axis[2], axis[1]],
[axis[2], 0, -axis[0]],
[-axis[1], axis[0], 0]])
rot = math.cos(theta) * np.identity(3) + math.sin(theta) * cprod + \
(1 - math.cos(theta)) * np.outer(axis, axis)
return rot
# Map vertices and subset of faces to 0-indexed vertices, keeping only relevant vertices
def trimMesh(vertices, faces):
unique_v = np.sort(np.unique(faces.flatten()))
v_val = np.arange(len(unique_v))
v_map = dict(zip(unique_v, v_val))
new_faces = np.array([v_map[i] for i in faces.flatten()]).reshape(faces.shape[0], faces.shape[1])
new_v = vertices[unique_v]
return new_v, new_faces
# ================== VISUALIZATION =======================
# Back out camera parameters from view transform matrix
def extract_from_gl_viewmat(gl_mat):
gl_mat = gl_mat.reshape(4, 4)
s = gl_mat[0, :3]
u = gl_mat[1, :3]
f = -1 * gl_mat[2, :3]
coord = gl_mat[:3, 3] # first 3 entries of the last column
camera_location = np.array([-s, -u, f]).T @ coord
target = camera_location + f * 10 # any scale
return camera_location, target
def psScreenshot(vertices, faces, axis, angles, save_path, name="mesh", frame_folder="frames", scalars=None,
colors=None,
defined_on="faces", highlight_faces=None, highlight_color=[1, 0, 0], highlight_radius=None,
cmap=None, sminmax=None, cpos=None, clook=None, save_video=False, save_base=False,
ground_plane="tile_reflection", debug=False, edge_color=[0, 0, 0], edge_width=1, material=None):
import polyscope as ps
ps.init()
# Set camera to look at same fixed position in centroid of original mesh
# center = np.mean(vertices, axis = 0)
# pos = center + np.array([0, 0, 3])
# ps.look_at(pos, center)
ps.set_ground_plane_mode(ground_plane)
frame_path = f"{save_path}/{frame_folder}"
if save_base == True:
ps_mesh = ps.register_surface_mesh("mesh", vertices, faces, enabled=True,
edge_color=edge_color, edge_width=edge_width, material=material)
ps.screenshot(f"{frame_path}/{name}.png")
ps.remove_all_structures()
Path(frame_path).mkdir(parents=True, exist_ok=True)
# Convert 2D to 3D by appending Z-axis
if vertices.shape[1] == 2:
vertices = np.concatenate((vertices, np.zeros((len(vertices), 1))), axis=1)
for i in range(len(angles)):
rot = getRotMat(axis, angles[i])
rot_verts = np.transpose(rot @ np.transpose(vertices))
ps_mesh = ps.register_surface_mesh("mesh", rot_verts, faces, enabled=True,
edge_color=edge_color, edge_width=edge_width, material=material)
if scalars is not None:
ps_mesh.add_scalar_quantity(f"scalar", scalars, defined_on=defined_on,
cmap=cmap, enabled=True, vminmax=sminmax)
if colors is not None:
ps_mesh.add_color_quantity(f"color", colors, defined_on=defined_on,
enabled=True)
if highlight_faces is not None:
# Create curve to highlight faces
curve_v, new_f = trimMesh(rot_verts, faces[highlight_faces, :])
curve_edges = []
for face in new_f:
curve_edges.extend(
[[face[0], face[1]], [face[1], face[2]], [face[2], face[0]]])
curve_edges = np.array(curve_edges)
ps_curve = ps.register_curve_network("curve", curve_v, curve_edges, color=highlight_color,
radius=highlight_radius)
if cpos is None or clook is None:
ps.reset_camera_to_home_view()
else:
ps.look_at(cpos, clook)
if debug == True:
ps.show()
ps.screenshot(f"{frame_path}/{name}_{i}.png")
ps.remove_all_structures()
if save_video == True:
import glob
from PIL import Image
fp_in = f"{frame_path}/{name}_*.png"
fp_out = f"{save_path}/{name}.gif"
img, *imgs = [Image.open(f) for f in sorted(glob.glob(fp_in))]
img.save(fp=fp_out, format='GIF', append_images=imgs,
save_all=True, duration=200, loop=0)
# ================== POSITIONAL ENCODERS =============================
class FourierFeatureTransform(torch.nn.Module):
"""
An implementation of Gaussian Fourier feature mapping.
"Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains":
https://arxiv.org/abs/2006.10739
https://people.eecs.berkeley.edu/~bmild/fourfeat/index.html
Given an input of size [batches, num_input_channels, width, height],
returns a tensor of size [batches, mapping_size*2, width, height].
"""
def __init__(self, num_input_channels, mapping_size=256, scale=10, exclude=0):
super().__init__()
self._num_input_channels = num_input_channels
self._mapping_size = mapping_size
self.exclude = exclude
B = torch.randn((num_input_channels, mapping_size)) * scale
B_sort = sorted(B, key=lambda x: torch.norm(x, p=2))
self._B = torch.stack(B_sort) # for sape
def forward(self, x):
# assert x.dim() == 4, 'Expected 4D input (got {}D input)'.format(x.dim())
batches, channels = x.shape
assert channels == self._num_input_channels, \
"Expected input to have {} channels (got {} channels)".format(self._num_input_channels, channels)
# Make shape compatible for matmul with _B.
# From [B, C, W, H] to [(B*W*H), C].
# x = x.permute(0, 2, 3, 1).reshape(batches * width * height, channels)
res = x @ self._B.to(x.device)
# From [(B*W*H), C] to [B, W, H, C]
# x = x.view(batches, width, height, self._mapping_size)
# From [B, W, H, C] to [B, C, W, H]
# x = x.permute(0, 3, 1, 2)
res = 2 * np.pi * res
return torch.cat([x, torch.sin(res), torch.cos(res)], dim=1)
def poisson_mesh_reconstruction(points, normals=None):
# points/normals: [N, 3] np.ndarray
import open3d as o3d
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
# outlier removal
pcd, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=10)
# normals
if normals is None:
pcd.estimate_normals()
else:
pcd.normals = o3d.utility.Vector3dVector(normals[ind])
# visualize
o3d.visualization.draw_geometries([pcd], point_show_normal=False)
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=9)
# vertices_to_remove = densities < np.quantile(densities, 0.1)
# mesh.remove_vertices_by_mask(vertices_to_remove)
# visualize
o3d.visualization.draw_geometries([mesh])
vertices = np.asarray(mesh.vertices)
triangles = np.asarray(mesh.triangles)
print(f'[INFO] poisson mesh reconstruction: {points.shape} --> V: {vertices.shape} / F:{triangles.shape}')
return vertices, triangles
def decimate_mesh(verts, faces, target, backend='pymeshlab', remesh=False, optimalplacement=True):
# optimalplacement: default is True, but for flat mesh must turn False to prevent spike artifect.
_ori_vert_shape = verts.shape
_ori_face_shape = faces.shape
if backend == 'pyfqmr':
import pyfqmr
solver = pyfqmr.Simplify()
solver.setMesh(verts, faces)
solver.simplify_mesh(target_count=target, preserve_border=False, verbose=False)
verts, faces, normals = solver.getMesh()
else:
m = pml.Mesh(verts, faces)
ms = pml.MeshSet()
ms.add_mesh(m, 'mesh') # will copy!
# filters
# ms.meshing_decimation_clustering(threshold=pml.Percentage(1))
ms.meshing_decimation_quadric_edge_collapse(targetfacenum=int(target), optimalplacement=optimalplacement)
if remesh:
# ms.apply_coord_taubin_smoothing()
ms.meshing_isotropic_explicit_remeshing(iterations=3, targetlen=pml.Percentage(1))
# extract mesh
m = ms.current_mesh()
verts = m.vertex_matrix()
faces = m.face_matrix()
print(f'[INFO] mesh decimation: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}')
return verts, faces
def clean_mesh(verts, faces, v_pct=1, min_f=8, min_d=5, repair=True, remesh=False):
# verts: [N, 3]
# faces: [N, 3]
_ori_vert_shape = verts.shape
_ori_face_shape = faces.shape
m = pml.Mesh(verts, faces)
ms = pml.MeshSet()
ms.add_mesh(m, 'mesh') # will copy!
# filters
ms.meshing_remove_unreferenced_vertices() # verts not refed by any faces
if v_pct > 0:
ms.meshing_merge_close_vertices(threshold=pml.Percentage(v_pct)) # 1/10000 of bounding box diagonal
ms.meshing_remove_duplicate_faces() # faces defined by the same verts
ms.meshing_remove_null_faces() # faces with area == 0
if min_d > 0:
ms.meshing_remove_connected_component_by_diameter(mincomponentdiag=pml.Percentage(min_d))
if min_f > 0:
ms.meshing_remove_connected_component_by_face_number(mincomponentsize=min_f)
if repair:
# ms.meshing_remove_t_vertices(method=0, threshold=40, repeat=True)
ms.meshing_repair_non_manifold_edges(method=0)
ms.meshing_repair_non_manifold_vertices(vertdispratio=0)
if remesh:
# ms.apply_coord_taubin_smoothing()
ms.meshing_isotropic_explicit_remeshing(iterations=3, targetlen=pml.Percentage(1))
# extract mesh
m = ms.current_mesh()
verts = m.vertex_matrix()
faces = m.face_matrix()
print(f'[INFO] mesh cleaning: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}')
return verts, faces
def laplace_regularizer_const(v_pos, t_pos_idx):
term = torch.zeros_like(v_pos)
norm = torch.zeros_like(v_pos[..., 0:1])
v0 = v_pos[t_pos_idx[:, 0], :]
v1 = v_pos[t_pos_idx[:, 1], :]
v2 = v_pos[t_pos_idx[:, 2], :]
term.scatter_add_(0, t_pos_idx[:, 0:1].repeat(1, 3), (v1 - v0) + (v2 - v0))
term.scatter_add_(0, t_pos_idx[:, 1:2].repeat(1, 3), (v0 - v1) + (v2 - v1))
term.scatter_add_(0, t_pos_idx[:, 2:3].repeat(1, 3), (v0 - v2) + (v1 - v2))
two = torch.ones_like(v0) * 2.0
norm.scatter_add_(0, t_pos_idx[:, 0:1], two)
norm.scatter_add_(0, t_pos_idx[:, 1:2], two)
norm.scatter_add_(0, t_pos_idx[:, 2:3], two)
term = term / torch.clamp(norm, min=1.0)
return torch.mean(term ** 2)
|