File size: 19,904 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import torch
import kaolin as kal
import numpy as np
from pathlib import Path
import numpy as np
import pymeshlab as pml

if torch.cuda.is_available():
    device = torch.device("cuda:0")
    torch.cuda.set_device(device)
else:
    device = torch.device("cpu")


def get_camera_from_view(elev, azim, r=3.0):
    x = r * torch.cos(azim) * torch.sin(elev)
    y = r * torch.sin(azim) * torch.sin(elev)
    z = r * torch.cos(elev)
    # print(elev,azim,x,y,z)

    pos = torch.tensor([x, y, z]).unsqueeze(0)
    look_at = -pos
    direction = torch.tensor([0.0, 1.0, 0.0]).unsqueeze(0)

    camera_proj = kal.render.camera.generate_transformation_matrix(pos, look_at, direction)
    return camera_proj


def get_camera_from_view2(elev, azim, r=3.0):
    x = r * torch.cos(elev) * torch.cos(azim)
    y = r * torch.sin(elev)
    z = r * torch.cos(elev) * torch.sin(azim)
    # print(elev,azim,x,y,z)

    pos = torch.tensor([x, y, z]).unsqueeze(0)
    look_at = -pos
    direction = torch.tensor([0.0, 1.0, 0.0]).unsqueeze(0)

    camera_proj = kal.render.camera.generate_transformation_matrix(pos, look_at, direction)
    return camera_proj


def get_homogenous_coordinates(V):
    N, D = V.shape
    bottom = torch.ones(N, device=device).unsqueeze(1)
    return torch.cat([V, bottom], dim=1)


def apply_affine(verts, A):
    verts = verts.to(device)
    verts = get_homogenous_coordinates(verts)
    A = torch.cat([A, torch.tensor([0.0, 0.0, 0.0, 1.0], device=device).unsqueeze(0)], dim=0)
    transformed_verts = A @ verts.T
    transformed_verts = transformed_verts[:-1]
    return transformed_verts.T


def standardize_mesh(mesh):
    verts = mesh.vertices
    center = verts.mean(dim=0)
    verts -= center
    scale = torch.std(torch.norm(verts, p=2, dim=1))
    verts /= scale
    mesh.vertices = verts
    return mesh


def normalize_mesh(mesh):
    verts = mesh.vertices

    # Compute center of bounding box
    # center = torch.mean(torch.column_stack([torch.max(verts, dim=0)[0], torch.min(verts, dim=0)[0]]))
    center = verts.mean(dim=0)
    verts = verts - center
    scale = torch.max(torch.norm(verts, p=2, dim=1))
    verts = verts / scale
    mesh.vertices = verts
    return mesh


def get_texture_map_from_color(mesh, color, H=224, W=224):
    num_faces = mesh.faces.shape[0]
    texture_map = torch.zeros(1, H, W, 3).to(device)
    texture_map[:, :, :] = color
    return texture_map.permute(0, 3, 1, 2)


def get_face_attributes_from_color(mesh, color):
    num_faces = mesh.faces.shape[0]
    face_attributes = torch.zeros(1, num_faces, 3, 3).to(device)
    face_attributes[:, :, :] = color
    return face_attributes


def sample_bary(faces, vertices):
    num_faces = faces.shape[0]
    num_vertices = vertices.shape[0]

    # get random barycentric for each face TODO: improve sampling
    A = torch.randn(num_faces)
    B = torch.randn(num_faces) * (1 - A)
    C = 1 - (A + B)
    bary = torch.vstack([A, B, C]).to(device)

    # compute xyz of new vertices and new uvs (if mesh has them)
    new_vertices = torch.zeros(num_faces, 3).to(device)
    new_uvs = torch.zeros(num_faces, 2).to(device)
    face_verts = kal.ops.mesh.index_vertices_by_faces(vertices.unsqueeze(0), faces)
    for f in range(num_faces):
        new_vertices[f] = bary[:, f] @ face_verts[:, f]
    new_vertices = torch.cat([vertices, new_vertices])
    return new_vertices


def _add_vertices(mesh):
    faces = torch.as_tensor(mesh.faces)
    vertices = torch.as_tensor(mesh.vertices)
    num_faces = faces.shape[0]
    num_vertices = vertices.shape[0]

    # get random barycentric for each face TODO: improve sampling
    A = torch.randn(num_faces)
    B = torch.randn(num_faces) * (1 - A)
    C = 1 - (A + B)
    bary = torch.vstack([A, B, C]).to(device)

    # compute xyz of new vertices and new uvs (if mesh has them)
    new_vertices = torch.zeros(num_faces, 3).to(device)
    new_uvs = torch.zeros(num_faces, 2).to(device)
    face_verts = kal.ops.mesh.index_vertices_by_faces(vertices.unsqueeze(0), faces)
    face_uvs = mesh.face_uvs
    for f in range(num_faces):
        new_vertices[f] = bary[:, f] @ face_verts[:, f]
        if face_uvs is not None:
            new_uvs[f] = bary[:, f] @ face_uvs[:, f]

    # update face and face_uvs of mesh
    new_vertices = torch.cat([vertices, new_vertices])
    new_faces = []
    new_face_uvs = []
    new_vertex_normals = []
    for i in range(num_faces):
        old_face = faces[i]
        a, b, c = old_face[0], old_face[1], old_face[2]
        d = num_vertices + i
        new_faces.append(torch.tensor([a, b, d]).to(device))
        new_faces.append(torch.tensor([a, d, c]).to(device))
        new_faces.append(torch.tensor([d, b, c]).to(device))
        if face_uvs is not None:
            old_face_uvs = face_uvs[0, i]
            a, b, c = old_face_uvs[0], old_face_uvs[1], old_face_uvs[2]
            d = new_uvs[i]
            new_face_uvs.append(torch.vstack([a, b, d]))
            new_face_uvs.append(torch.vstack([a, d, c]))
            new_face_uvs.append(torch.vstack([d, b, c]))
        if mesh.face_normals is not None:
            new_vertex_normals.append(mesh.face_normals[i])
        else:
            e1 = vertices[b] - vertices[a]
            e2 = vertices[c] - vertices[a]
            norm = torch.cross(e1, e2)
            norm /= torch.norm(norm)

            # Double check sign against existing vertex normals
            if torch.dot(norm, mesh.vertex_normals[a]) < 0:
                norm = -norm

            new_vertex_normals.append(norm)

    vertex_normals = torch.cat([mesh.vertex_normals, torch.stack(new_vertex_normals)])

    if face_uvs is not None:
        new_face_uvs = torch.vstack(new_face_uvs).unsqueeze(0).view(1, 3 * num_faces, 3, 2)
    new_faces = torch.vstack(new_faces)

    return new_vertices, new_faces, vertex_normals, new_face_uvs



def get_rgb_per_vertex(vertices, faces, face_rgbs):
    num_vertex = vertices.shape[0]
    num_faces = faces.shape[0]
    vertex_color = torch.zeros(num_vertex, 3)

    for v in range(num_vertex):
        for f in range(num_faces):
            face = num_faces[f]
            if v in face:
                vertex_color[v] = face_rgbs[f]
    return face_rgbs


def get_barycentric(p, faces):
    # faces num_points x 3 x 3
    # p num_points x 3
    # source: https://gamedev.stackexchange.com/questions/23743/whats-the-most-efficient-way-to-find-barycentric-coordinates

    a, b, c = faces[:, 0], faces[:, 1], faces[:, 2]

    v0, v1, v2 = b - a, c - a, p - a
    d00 = torch.sum(v0 * v0, dim=1)
    d01 = torch.sum(v0 * v1, dim=1)
    d11 = torch.sum(v1 * v1, dim=1)
    d20 = torch.sum(v2 * v0, dim=1)
    d21 = torch.sum(v2 * v1, dim=1)
    denom = d00 * d11 - d01 * d01
    v = (d11 * d20 - d01 * d21) / denom
    w = (d00 * d21 - d01 * d20) / denom
    u = 1 - (w + v)

    return torch.vstack([u, v, w]).T


def get_uv_assignment(num_faces):
    M = int(np.ceil(np.sqrt(num_faces)))
    uv_map = torch.zeros(1, num_faces, 3, 2).to(device)
    px, py = 0, 0
    count = 0
    for i in range(M):
        px = 0
        for j in range(M):
            uv_map[:, count] = torch.tensor([[px, py],
                                             [px + 1, py],
                                             [px + 1, py + 1]])
            px += 2
            count += 1
            if count >= num_faces:
                hw = torch.max(uv_map.view(-1, 2), dim=0)[0]
                uv_map = (uv_map - hw / 2.0) / (hw / 2)
                return uv_map
        py += 2


def get_texture_visual(res, nt, mesh):
    faces_vt = kal.ops.mesh.index_vertices_by_faces(mesh.vertices.unsqueeze(0), mesh.faces).squeeze(0)

    # as to not include encpoint, gen res+1 points and take first res
    uv = torch.cartesian_prod(torch.linspace(-1, 1, res + 1)[:-1], torch.linspace(-1, 1, res + 1))[:-1].to(device)
    image = torch.zeros(res, res, 3).to(device)
    # image[:,:,:] = torch.tensor([0.0,1.0,0.0]).to(device)
    image = image.permute(2, 0, 1)
    num_faces = mesh.faces.shape[0]
    uv_map = get_uv_assignment(num_faces).squeeze(0)

    zero = torch.tensor([0.0, 0.0, 0.0]).to(device)
    one = torch.tensor([1.0, 1.0, 1.0]).to(device)

    for face in range(num_faces):
        bary = get_barycentric(uv, uv_map[face].repeat(len(uv), 1, 1))

        maskA = torch.logical_and(bary[:, 0] >= 0.0, bary[:, 0] <= 1.0)
        maskB = torch.logical_and(bary[:, 1] >= 0.0, bary[:, 1] <= 1.0)
        maskC = torch.logical_and(bary[:, 2] >= 0.0, bary[:, 2] <= 1.0)

        mask = torch.logical_and(maskA, maskB)
        mask = torch.logical_and(maskC, mask)

        inside_triangle = bary[mask]
        inside_triangle_uv = inside_triangle @ uv_map[face]
        inside_triangle_xyz = inside_triangle @ faces_vt[face]
        inside_triangle_rgb = nt(inside_triangle_xyz)

        pixels = (inside_triangle_uv + 1.0) / 2.0
        pixels = pixels * res
        pixels = torch.floor(pixels).type(torch.int64)

        image[:, pixels[:, 0], pixels[:, 1]] = inside_triangle_rgb.T

    return image


# Get rotation matrix about vector through origin
def getRotMat(axis, theta):
    """
    axis: np.array, normalized vector
    theta: radians
    """
    import math

    axis = axis / np.linalg.norm(axis)
    cprod = np.array([[0, -axis[2], axis[1]],
                      [axis[2], 0, -axis[0]],
                      [-axis[1], axis[0], 0]])
    rot = math.cos(theta) * np.identity(3) + math.sin(theta) * cprod + \
          (1 - math.cos(theta)) * np.outer(axis, axis)
    return rot


# Map vertices and subset of faces to 0-indexed vertices, keeping only relevant vertices
def trimMesh(vertices, faces):
    unique_v = np.sort(np.unique(faces.flatten()))
    v_val = np.arange(len(unique_v))
    v_map = dict(zip(unique_v, v_val))
    new_faces = np.array([v_map[i] for i in faces.flatten()]).reshape(faces.shape[0], faces.shape[1])
    new_v = vertices[unique_v]

    return new_v, new_faces


# ================== VISUALIZATION =======================
# Back out camera parameters from view transform matrix
def extract_from_gl_viewmat(gl_mat):
    gl_mat = gl_mat.reshape(4, 4)
    s = gl_mat[0, :3]
    u = gl_mat[1, :3]
    f = -1 * gl_mat[2, :3]
    coord = gl_mat[:3, 3]  # first 3 entries of the last column
    camera_location = np.array([-s, -u, f]).T @ coord
    target = camera_location + f * 10  # any scale
    return camera_location, target


def psScreenshot(vertices, faces, axis, angles, save_path, name="mesh", frame_folder="frames", scalars=None,
                 colors=None,
                 defined_on="faces", highlight_faces=None, highlight_color=[1, 0, 0], highlight_radius=None,
                 cmap=None, sminmax=None, cpos=None, clook=None, save_video=False, save_base=False,
                 ground_plane="tile_reflection", debug=False, edge_color=[0, 0, 0], edge_width=1, material=None):
    import polyscope as ps

    ps.init()
    # Set camera to look at same fixed position in centroid of original mesh
    # center = np.mean(vertices, axis = 0)
    # pos = center + np.array([0, 0, 3])
    # ps.look_at(pos, center)
    ps.set_ground_plane_mode(ground_plane)

    frame_path = f"{save_path}/{frame_folder}"
    if save_base == True:
        ps_mesh = ps.register_surface_mesh("mesh", vertices, faces, enabled=True,
                                           edge_color=edge_color, edge_width=edge_width, material=material)
        ps.screenshot(f"{frame_path}/{name}.png")
        ps.remove_all_structures()
    Path(frame_path).mkdir(parents=True, exist_ok=True)
    # Convert 2D to 3D by appending Z-axis
    if vertices.shape[1] == 2:
        vertices = np.concatenate((vertices, np.zeros((len(vertices), 1))), axis=1)

    for i in range(len(angles)):
        rot = getRotMat(axis, angles[i])
        rot_verts = np.transpose(rot @ np.transpose(vertices))

        ps_mesh = ps.register_surface_mesh("mesh", rot_verts, faces, enabled=True,
                                           edge_color=edge_color, edge_width=edge_width, material=material)
        if scalars is not None:
            ps_mesh.add_scalar_quantity(f"scalar", scalars, defined_on=defined_on,
                                        cmap=cmap, enabled=True, vminmax=sminmax)
        if colors is not None:
            ps_mesh.add_color_quantity(f"color", colors, defined_on=defined_on,
                                       enabled=True)
        if highlight_faces is not None:
            # Create curve to highlight faces
            curve_v, new_f = trimMesh(rot_verts, faces[highlight_faces, :])
            curve_edges = []
            for face in new_f:
                curve_edges.extend(
                    [[face[0], face[1]], [face[1], face[2]], [face[2], face[0]]])
            curve_edges = np.array(curve_edges)
            ps_curve = ps.register_curve_network("curve", curve_v, curve_edges, color=highlight_color,
                                                 radius=highlight_radius)

        if cpos is None or clook is None:
            ps.reset_camera_to_home_view()
        else:
            ps.look_at(cpos, clook)

        if debug == True:
            ps.show()
        ps.screenshot(f"{frame_path}/{name}_{i}.png")
        ps.remove_all_structures()
    if save_video == True:
        import glob
        from PIL import Image
        fp_in = f"{frame_path}/{name}_*.png"
        fp_out = f"{save_path}/{name}.gif"
        img, *imgs = [Image.open(f) for f in sorted(glob.glob(fp_in))]
        img.save(fp=fp_out, format='GIF', append_images=imgs,
                 save_all=True, duration=200, loop=0)


# ================== POSITIONAL ENCODERS =============================
class FourierFeatureTransform(torch.nn.Module):
    """
    An implementation of Gaussian Fourier feature mapping.
    "Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains":
       https://arxiv.org/abs/2006.10739
       https://people.eecs.berkeley.edu/~bmild/fourfeat/index.html
    Given an input of size [batches, num_input_channels, width, height],
     returns a tensor of size [batches, mapping_size*2, width, height].
    """

    def __init__(self, num_input_channels, mapping_size=256, scale=10, exclude=0):
        super().__init__()

        self._num_input_channels = num_input_channels
        self._mapping_size = mapping_size
        self.exclude = exclude
        B = torch.randn((num_input_channels, mapping_size)) * scale
        B_sort = sorted(B, key=lambda x: torch.norm(x, p=2))
        self._B = torch.stack(B_sort)  # for sape

    def forward(self, x):
        # assert x.dim() == 4, 'Expected 4D input (got {}D input)'.format(x.dim())

        batches, channels = x.shape

        assert channels == self._num_input_channels, \
            "Expected input to have {} channels (got {} channels)".format(self._num_input_channels, channels)

        # Make shape compatible for matmul with _B.
        # From [B, C, W, H] to [(B*W*H), C].
        # x = x.permute(0, 2, 3, 1).reshape(batches * width * height, channels)

        res = x @ self._B.to(x.device)

        # From [(B*W*H), C] to [B, W, H, C]
        # x = x.view(batches, width, height, self._mapping_size)
        # From [B, W, H, C] to [B, C, W, H]
        # x = x.permute(0, 3, 1, 2)

        res = 2 * np.pi * res
        return torch.cat([x, torch.sin(res), torch.cos(res)], dim=1)


def poisson_mesh_reconstruction(points, normals=None):
    # points/normals: [N, 3] np.ndarray

    import open3d as o3d

    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(points)

    # outlier removal
    pcd, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=10)

    # normals
    if normals is None:
        pcd.estimate_normals()
    else:
        pcd.normals = o3d.utility.Vector3dVector(normals[ind])

    # visualize
    o3d.visualization.draw_geometries([pcd], point_show_normal=False)

    mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=9)
    # vertices_to_remove = densities < np.quantile(densities, 0.1)
    # mesh.remove_vertices_by_mask(vertices_to_remove)

    # visualize
    o3d.visualization.draw_geometries([mesh])

    vertices = np.asarray(mesh.vertices)
    triangles = np.asarray(mesh.triangles)

    print(f'[INFO] poisson mesh reconstruction: {points.shape} --> V: {vertices.shape} / F:{triangles.shape}')

    return vertices, triangles


def decimate_mesh(verts, faces, target, backend='pymeshlab', remesh=False, optimalplacement=True):
    # optimalplacement: default is True, but for flat mesh must turn False to prevent spike artifect.

    _ori_vert_shape = verts.shape
    _ori_face_shape = faces.shape

    if backend == 'pyfqmr':
        import pyfqmr
        solver = pyfqmr.Simplify()
        solver.setMesh(verts, faces)
        solver.simplify_mesh(target_count=target, preserve_border=False, verbose=False)
        verts, faces, normals = solver.getMesh()
    else:

        m = pml.Mesh(verts, faces)
        ms = pml.MeshSet()
        ms.add_mesh(m, 'mesh')  # will copy!

        # filters
        # ms.meshing_decimation_clustering(threshold=pml.Percentage(1))
        ms.meshing_decimation_quadric_edge_collapse(targetfacenum=int(target), optimalplacement=optimalplacement)

        if remesh:
            # ms.apply_coord_taubin_smoothing()
            ms.meshing_isotropic_explicit_remeshing(iterations=3, targetlen=pml.Percentage(1))

        # extract mesh
        m = ms.current_mesh()
        verts = m.vertex_matrix()
        faces = m.face_matrix()

    print(f'[INFO] mesh decimation: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}')

    return verts, faces


def clean_mesh(verts, faces, v_pct=1, min_f=8, min_d=5, repair=True, remesh=False):
    # verts: [N, 3]
    # faces: [N, 3]

    _ori_vert_shape = verts.shape
    _ori_face_shape = faces.shape

    m = pml.Mesh(verts, faces)
    ms = pml.MeshSet()
    ms.add_mesh(m, 'mesh')  # will copy!

    # filters
    ms.meshing_remove_unreferenced_vertices()  # verts not refed by any faces

    if v_pct > 0:
        ms.meshing_merge_close_vertices(threshold=pml.Percentage(v_pct))  # 1/10000 of bounding box diagonal

    ms.meshing_remove_duplicate_faces()  # faces defined by the same verts
    ms.meshing_remove_null_faces()  # faces with area == 0

    if min_d > 0:
        ms.meshing_remove_connected_component_by_diameter(mincomponentdiag=pml.Percentage(min_d))

    if min_f > 0:
        ms.meshing_remove_connected_component_by_face_number(mincomponentsize=min_f)

    if repair:
        # ms.meshing_remove_t_vertices(method=0, threshold=40, repeat=True)
        ms.meshing_repair_non_manifold_edges(method=0)
        ms.meshing_repair_non_manifold_vertices(vertdispratio=0)

    if remesh:
        # ms.apply_coord_taubin_smoothing()
        ms.meshing_isotropic_explicit_remeshing(iterations=3, targetlen=pml.Percentage(1))

    # extract mesh
    m = ms.current_mesh()
    verts = m.vertex_matrix()
    faces = m.face_matrix()

    print(f'[INFO] mesh cleaning: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}')

    return verts, faces


def laplace_regularizer_const(v_pos, t_pos_idx):
    term = torch.zeros_like(v_pos)
    norm = torch.zeros_like(v_pos[..., 0:1])

    v0 = v_pos[t_pos_idx[:, 0], :]
    v1 = v_pos[t_pos_idx[:, 1], :]
    v2 = v_pos[t_pos_idx[:, 2], :]

    term.scatter_add_(0, t_pos_idx[:, 0:1].repeat(1, 3), (v1 - v0) + (v2 - v0))
    term.scatter_add_(0, t_pos_idx[:, 1:2].repeat(1, 3), (v0 - v1) + (v2 - v1))
    term.scatter_add_(0, t_pos_idx[:, 2:3].repeat(1, 3), (v0 - v2) + (v1 - v2))

    two = torch.ones_like(v0) * 2.0
    norm.scatter_add_(0, t_pos_idx[:, 0:1], two)
    norm.scatter_add_(0, t_pos_idx[:, 1:2], two)
    norm.scatter_add_(0, t_pos_idx[:, 2:3], two)

    term = term / torch.clamp(norm, min=1.0)

    return torch.mean(term ** 2)