File size: 7,170 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
73ba0a5
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73ba0a5
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73ba0a5
c3d0293
 
 
73ba0a5
c3d0293
73ba0a5
 
 
 
 
 
c3d0293
 
 
 
73ba0a5
 
c3d0293
 
73ba0a5
 
 
c3d0293
 
 
 
 
 
 
73ba0a5
 
 
 
 
 
 
 
 
c3d0293
 
 
 
 
 
 
 
 
 
73ba0a5
 
c3d0293
73ba0a5
c3d0293
73ba0a5
c3d0293
73ba0a5
c3d0293
 
 
73ba0a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
import os, sys
import pickle

sys.path.append(os.path.dirname(__file__))
from customloss import (camera_fitting_loss_3d,
                        body_fitting_loss_3d, 
                        )
from prior import MaxMixturePrior
from SMPLX.visualize_joint2smpl.joints2smpl.src import config
from tqdm import tqdm

@torch.no_grad()
def guess_init_3d(model_joints, 
                  j3d, 
                  joints_category="orig"):
    """Initialize the camera translation via triangle similarity, by using the torso joints        .
    :param model_joints: SMPL model with pre joints
    :param j3d: 25x3 array of Kinect Joints
    :returns: 3D vector corresponding to the estimated camera translation
    """
    # get the indexed four
    gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder']
    gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
    
    if joints_category=="orig":
        joints_ind_category = [config.JOINT_MAP[joint] for joint in gt_joints]
    elif joints_category=="AMASS":
        joints_ind_category = [config.AMASS_JOINT_MAP[joint] for joint in gt_joints] 
    else:
        print("NO SUCH JOINTS CATEGORY!") 

    sum_init_t = (j3d[:, joints_ind_category] - model_joints[:, gt_joints_ind]).sum(dim=1)
    init_t = sum_init_t / 4.0
    return init_t


# SMPLIfy 3D
class SMPLify3D():
    """Implementation of SMPLify, use 3D joints."""

    def __init__(self,
                 smplxmodel,
                 step_size=1.0,
                 num_iters=100,
                 joints_category="orig",
                 device=torch.device('cuda:0'),
                 ):

        # Store options
        self.device = device
        self.step_size = step_size

        self.num_iters = num_iters
        # GMM pose prior
        self.pose_prior = MaxMixturePrior(prior_folder=config.GMM_MODEL_DIR,
                                          num_gaussians=8,
                                          dtype=torch.float32).to(device)
        # reLoad SMPL-X model
        self.smpl = smplxmodel

        self.model_faces = smplxmodel.faces_tensor.view(-1)

        # select joint joint_category
        self.joints_category = joints_category
        
        if joints_category=="orig":
            self.smpl_index = config.full_smpl_idx
            self.corr_index = config.full_smpl_idx 
        elif joints_category=="AMASS":
            self.smpl_index = config.amass_smpl_idx
            self.corr_index = config.amass_idx
        else:
            self.smpl_index = None 
            self.corr_index = None
            print("NO SUCH JOINTS CATEGORY!")

    # ---- get the man function here ------
    def __call__(self, init_pose, init_betas, init_cam_t, j3d, conf_3d=1.0, seq_ind=0):
        """Perform body fitting.
        Input:
            init_pose: SMPL pose estimate
            init_betas: SMPL betas estimate
            init_cam_t: Camera translation estimate
            j3d: joints 3d aka keypoints
            conf_3d: confidence for 3d joints
			seq_ind: index of the sequence
        Returns:
            vertices: Vertices of optimized shape
            joints: 3D joints of optimized shape
            pose: SMPL pose parameters of optimized shape
            betas: SMPL beta parameters of optimized shape
            camera_translation: Camera translation
        """
        # Split SMPL pose to body pose and global orientation
        body_pose = init_pose[:, 3:].detach().clone()
        global_orient = init_pose[:, :3].detach().clone()
        betas = init_betas.detach().clone()

        # use guess 3d to get the initial
        smpl_output = self.smpl(global_orient=global_orient,
                                body_pose=body_pose,
                                betas=betas)
        model_joints = smpl_output.joints

        init_cam_t = guess_init_3d(model_joints, j3d, self.joints_category).unsqueeze(1).detach()
        camera_translation = init_cam_t.clone()
        
        preserve_pose = init_pose[:, 3:].detach().clone()
       # -------------Step 1: Optimize camera translation and body orientation--------
        # Optimize only camera translation and body orientation
        body_pose.requires_grad = False
        betas.requires_grad = True
        global_orient.requires_grad = True
        camera_translation.requires_grad = True

        camera_opt_params = [betas, global_orient, camera_translation]

        camera_optimizer = torch.optim.LBFGS(camera_opt_params, max_iter=10,
                                                lr=self.step_size, line_search_fn='strong_wolfe')
        cycle = tqdm(range(10))
        for i in cycle:
            def closure():
                camera_optimizer.zero_grad()
                smpl_output = self.smpl(global_orient=global_orient,
                                        body_pose=body_pose,
                                        betas=betas)
                model_joints = smpl_output.joints
                loss = camera_fitting_loss_3d(model_joints, camera_translation,
                                                init_cam_t, j3d, self.joints_category)

                loss.backward()
                return loss
            
            camera_optimizer.step(closure)

        # Fix camera translation after optimizing camera
        # --------Step 2: Optimize body joints --------------------------
        # Optimize only the body pose and global orientation of the body
        body_pose.requires_grad = True
        global_orient.requires_grad = True
        camera_translation.requires_grad = True
        betas.requires_grad = True
        body_opt_params = [body_pose, betas, global_orient, camera_translation]

        cycle = tqdm(range(self.num_iters))
        body_optimizer = torch.optim.LBFGS(body_opt_params, max_iter=self.num_iters,
                                            lr=self.step_size, line_search_fn='strong_wolfe')
        for i in cycle:
            def closure():
                body_optimizer.zero_grad()
                smpl_output = self.smpl(global_orient=global_orient,
                                        body_pose=body_pose,
                                        betas=betas)
                model_joints = smpl_output.joints
                model_vertices = smpl_output.vertices

                loss = body_fitting_loss_3d(body_pose, preserve_pose, betas, model_joints[:, self.smpl_index], camera_translation,
                                            j3d[:, self.corr_index], self.pose_prior,
                                            joints3d_conf=conf_3d,
                                            joint_loss_weight=600.0,
                                            pose_preserve_weight=5.0,
                                            use_collision=False, 
                                            model_vertices=model_vertices, model_faces=self.model_faces,
                                            search_tree=None, pen_distance=None, filter_faces=None)
                loss.backward()
                return loss

            body_optimizer.step(closure)


        pose = torch.cat([global_orient, body_pose], dim=-1).detach()
        return pose