File size: 6,194 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import numpy as np
import pickle
from SMPLX.transfer_model.write_obj import write_obj
from SMPLX.transfer_model.utils import read_deformation_transfer
from SMPLX.transfer_model.data import build_dataloader
from SMPLX.transfer_model.transfer_model import run_fitting
from SMPLX.transfer_model.merge_output import merge
from SMPLX.smplx import build_layer
import os
import torch
from tqdm import tqdm
import subprocess
import platform
import time

def load_npz(path):
    return np.load(path)

def load_pickle(path):
    with open(path, "rb") as f:
        res = pickle.load(f, encoding="latin1")
    return res

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='transfer between smpls')
    parser.add_argument('--source', default="smpl")
    parser.add_argument("--target", default="smplh")
    parser.add_argument("--model_path", default="/data/TTA/data/body_models")
    parser.add_argument("--extra_dir", default="/data/TTA/data/extra_dir", help="https://smpl-x.is.tue.mpg.de/download.php")
    parser.add_argument("--source_path", default="/data/TTA/data/humanact_smpl")
    parser.add_argument("--target_path", default="/data/TTA/data/humanact_smplh")
    parser.add_argument("--batch_size", default=500, type=int)
    args = parser.parse_args()
    device = "cuda"

    if args.target == "smplx" or args.source == "smplx":
        deformation_transfer_path = os.path.join(args.extra_dir, "{}2{}_deftrafo_setup.pkl".format(args.source, args.target))
    else:
        deformation_transfer_path = os.path.join(args.extra_dir, "{}2{}_def_transfer.pkl".format(args.source, args.target))

    if args.target == "smplx":
        model_params = {"betas":{"num":10}, "expression":{"num": 10}}

        mask_ids_fname = os.path.join(args.extra_dir, "smplx_mask_ids.npy")
        if os.path.exists(mask_ids_fname):
            mask_ids = np.load(mask_ids_fname)
            mask_ids = torch.from_numpy(mask_ids).to(device=device)
        else:
            print(f'Mask ids fname not found: {mask_ids_fname}')    

    elif args.target == "smplh" or args.target == "smpl":
        model_params = {"betas":{"num":10}}

        mask_ids_fname = ""   
        mask_ids = None     

    body_model_conf = {
        "ext":"npz",
        "model_type": args.target,
        "folder": args.model_path,
        "use_compressed": False,
        args.target:model_params
    }

    if args.target == "smplx" or args.target == "smpl":
        body_model_conf["use_face_contour"] = True


    for root, dirs, files in os.walk(args.source_path):
        for name in files:
            curr_file = os.path.join(root, name)

            new_root = os.path.join(args.target_path , "/".join(root.split("/")[:-2:-1]))
            os.makedirs(new_root, exist_ok=True)
            curr_target = os.path.join(new_root, name.replace(".npz", ".npy"))
            if os.path.exists(curr_target):
                print("%s has been competed"%(curr_target))
                continue

            if name.split(".")[-1] == "npz":
                curr = load_npz(curr_file)
                body_pose = None
            elif name.split(".")[-1] == "pkl":
                curr = load_pickle(curr_file)
                body_pose = None
            elif name.split(".")[-1] == "npy":
                curr = np.load(curr_file)
                body_pose = curr
            else:
                continue  
            
            if body_pose is None:
                try:
                    body_pose = curr["poses"]
                except:
                    print("Not Pose Data")
                    continue

                gender = str(curr["gender"])
                body_model_conf["gender"] = gender
            else:
                gender = "neutral"
                body_model_conf["gender"] = gender

        
            cid = name.split(".")[0]
            save_folder1 = os.path.join("temp", "objs")
            save_folder2 = os.path.join(new_root, str(time.time()))
            os.makedirs(save_folder1, exist_ok=True)
            os.makedirs(save_folder2, exist_ok=True)
        
            write_obj(args.model_path, curr_file, save_folder1, args.source, gender, 10, 10, True, device)
        
            body_model = build_layer(args.model_path, **body_model_conf)
            body_model = body_model.to(device=device)

            def_matrix = read_deformation_transfer(deformation_transfer_path, device=device)

            datasets = {
                "mesh_folder":{"data_folder":save_folder1},
                "batch_size":args.batch_size
            }

            data_obj_dict = build_dataloader(datasets)

            dataloader = data_obj_dict['dataloader']

            for ii, batch in enumerate(tqdm(dataloader)):
                for key in batch:
                    if torch.is_tensor(batch[key]):
                        batch[key] = batch[key].to(device=device)
                
                var_dict = run_fitting(batch, body_model, def_matrix, mask_ids)
                paths = batch['paths']

                for ii, path in enumerate(paths):
                    _, fname = os.path.split(path)

                    output_path = os.path.join(
                        save_folder2, f'{os.path.splitext(fname)[0]}.pkl')
                    
                    save_dict = {}
                    for key in var_dict.keys():
                        try:
                            save_dict[key] = var_dict[key][ii:ii+1]
                        except:
                            save_dict[key] = var_dict[key][ii:ii+1]
                    
                    with open(output_path, "wb") as f:
                        pickle.dump(save_dict, f)

            results = merge(save_folder2, gender)
            np.save(curr_target, results)

            cmd = "rm -r {}".format(save_folder1)
            subprocess.call(cmd, shell=platform.system() != 'Windows')
            cmd = "rm -r {}".format(save_folder2)
            subprocess.call(cmd, shell=platform.system() != 'Windows')

            del body_model
            del dataloader
            del data_obj_dict 
            torch.cuda.synchronize()
            torch.cuda.empty_cache()