Spaces:
Runtime error
Runtime error
File size: 14,790 Bytes
c3d0293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2020 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: Vassilis Choutas, vassilis.choutas@tuebingen.mpg.de
from typing import Optional, Dict, Callable
import sys
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
from loguru import logger
from SMPLX.transfer_model.utils import get_vertices_per_edge
from SMPLX.transfer_model.optimizers import build_optimizer, minimize
from SMPLX.transfer_model.utils import (
Tensor, batch_rodrigues, apply_deformation_transfer)
from SMPLX.transfer_model.losses import build_loss
def summary_closure(gt_vertices, var_dict, body_model, mask_ids=None):
param_dict = {}
for key, var in var_dict.items():
# Decode the axis-angles
if 'pose' in key or 'orient' in key:
param_dict[key] = batch_rodrigues(
var.reshape(-1, 3)).reshape(len(var), -1, 3, 3)
else:
# Simply pass the variable
param_dict[key] = var
body_model_output = body_model(
return_full_pose=True, get_skin=True, **param_dict)
est_vertices = body_model_output.vertices
if mask_ids is not None:
est_vertices = est_vertices[:, mask_ids]
gt_vertices = gt_vertices[:, mask_ids]
v2v = (est_vertices - gt_vertices).pow(2).sum(dim=-1).sqrt().mean()
return {
'Vertex-to-Vertex': v2v * 1000}
def build_model_forward_closure(
body_model: nn.Module,
var_dict: Dict[str, Tensor],
per_part: bool = True,
part_key: Optional[str] = None,
jidx: Optional[int] = None,
part: Optional[Tensor] = None
) -> Callable:
if per_part:
cond = part is not None and part_key is not None and jidx is not None
assert cond, (
'When per-part is True, "part", "part_key", "jidx" must not be'
' None.'
)
def model_forward():
param_dict = {}
for key, var in var_dict.items():
if part_key == key:
param_dict[key] = batch_rodrigues(
var.reshape(-1, 3)).reshape(len(var), -1, 3, 3)
param_dict[key][:, jidx] = batch_rodrigues(
part.reshape(-1, 3)).reshape(-1, 3, 3)
else:
# Decode the axis-angles
if 'pose' in key or 'orient' in key:
param_dict[key] = batch_rodrigues(
var.reshape(-1, 3)).reshape(len(var), -1, 3, 3)
else:
# Simply pass the variable
param_dict[key] = var
return body_model(
return_full_pose=True, get_skin=True, **param_dict)
else:
def model_forward():
param_dict = {}
for key, var in var_dict.items():
# Decode the axis-angles
if 'pose' in key or 'orient' in key:
param_dict[key] = batch_rodrigues(
var.reshape(-1, 3)).reshape(len(var), -1, 3, 3)
else:
# Simply pass the variable
param_dict[key] = var
return body_model(return_full_pose=True, get_skin=True,
**param_dict)
return model_forward
def build_edge_closure(
body_model: nn.Module,
var_dict: Dict[str, Tensor],
edge_loss: nn.Module,
optimizer_dict,
gt_vertices: Tensor,
per_part: bool = True,
part_key: Optional[str] = None,
jidx: Optional[int] = None,
part: Optional[Tensor] = None
) -> Callable:
''' Builds the closure for the edge objective
'''
optimizer = optimizer_dict['optimizer']
create_graph = optimizer_dict['create_graph']
if per_part:
params_to_opt = [part]
else:
params_to_opt = [p for key, p in var_dict.items() if 'pose' in key]
model_forward = build_model_forward_closure(
body_model, var_dict, per_part=per_part, part_key=part_key,
jidx=jidx, part=part)
def closure(backward=True):
if backward:
optimizer.zero_grad()
body_model_output = model_forward()
est_vertices = body_model_output.vertices
loss = edge_loss(est_vertices, gt_vertices)
if backward:
if create_graph:
# Use this instead of .backward to avoid GPU memory leaks
grads = torch.autograd.grad(
loss, params_to_opt, create_graph=True)
torch.autograd.backward(
params_to_opt, grads, create_graph=True)
else:
loss.backward()
return loss
return closure
def build_vertex_closure(
body_model: nn.Module,
var_dict: Dict[str, Tensor],
optimizer_dict,
gt_vertices: Tensor,
vertex_loss: nn.Module,
mask_ids=None,
per_part: bool = True,
part_key: Optional[str] = None,
jidx: Optional[int] = None,
part: Optional[Tensor] = None,
params_to_opt: Optional[Tensor] = None,
) -> Callable:
''' Builds the closure for the vertex objective
'''
optimizer = optimizer_dict['optimizer']
create_graph = optimizer_dict['create_graph']
model_forward = build_model_forward_closure(
body_model, var_dict, per_part=per_part, part_key=part_key,
jidx=jidx, part=part)
if params_to_opt is None:
params_to_opt = [p for key, p in var_dict.items()]
def closure(backward=True):
if backward:
optimizer.zero_grad()
body_model_output = model_forward()
est_vertices = body_model_output.vertices
loss = vertex_loss(
est_vertices[:, mask_ids] if mask_ids is not None else
est_vertices,
gt_vertices[:, mask_ids] if mask_ids is not None else gt_vertices)
if backward:
if create_graph:
# Use this instead of .backward to avoid GPU memory leaks
grads = torch.autograd.grad(
loss, params_to_opt, create_graph=True)
torch.autograd.backward(
params_to_opt, grads, create_graph=True)
else:
loss.backward()
return loss
return closure
def get_variables(
batch_size: int,
body_model: nn.Module,
dtype: torch.dtype = torch.float32
) -> Dict[str, Tensor]:
var_dict = {}
device = next(body_model.buffers()).device
if (body_model.name() == 'SMPL' or body_model.name() == 'SMPL+H' or
body_model.name() == 'SMPL-X'):
var_dict.update({
'transl': torch.zeros(
[batch_size, 3], device=device, dtype=dtype),
'global_orient': torch.zeros(
[batch_size, 1, 3], device=device, dtype=dtype),
'body_pose': torch.zeros(
[batch_size, body_model.NUM_BODY_JOINTS, 3],
device=device, dtype=dtype),
'betas': torch.zeros([batch_size, body_model.num_betas],
dtype=dtype, device=device),
})
if body_model.name() == 'SMPL+H' or body_model.name() == 'SMPL-X':
var_dict.update(
left_hand_pose=torch.zeros(
[batch_size, body_model.NUM_HAND_JOINTS, 3], device=device,
dtype=dtype),
right_hand_pose=torch.zeros(
[batch_size, body_model.NUM_HAND_JOINTS, 3], device=device,
dtype=dtype),
)
if body_model.name() == 'SMPL-X':
var_dict.update(
jaw_pose=torch.zeros([batch_size, 1, 3],
device=device, dtype=dtype),
leye_pose=torch.zeros([batch_size, 1, 3],
device=device, dtype=dtype),
reye_pose=torch.zeros([batch_size, 1, 3],
device=device, dtype=dtype),
expression=torch.zeros(
[batch_size, body_model.num_expression_coeffs],
device=device, dtype=dtype),
)
# Toggle gradients to True
for key, val in var_dict.items():
val.requires_grad_(True)
return var_dict
def run_fitting(
# exp_cfg,
batch: Dict[str, Tensor],
body_model: nn.Module,
def_matrix: Tensor,
mask_ids
) -> Dict[str, Tensor]:
''' Runs fitting
'''
vertices = batch['vertices']
faces = batch['faces']
batch_size = len(vertices)
dtype, device = vertices.dtype, vertices.device
# summary_steps = exp_cfg.get('summary_steps')
# interactive = exp_cfg.get('interactive')
summary_steps = 100
interactive = True
# Get the parameters from the model
var_dict = get_variables(batch_size, body_model)
# Build the optimizer object for the current batch
# optim_cfg = exp_cfg.get('optim', {})
optim_cfg = {'type': 'trust-ncg', 'lr': 1.0, 'gtol': 1e-06, 'ftol': -1.0, 'maxiters': 100, 'lbfgs': {'line_search_fn': 'strong_wolfe', 'max_iter': 50}, 'sgd': {'momentum': 0.9, 'nesterov': True}, 'adam': {'betas': [0.9, 0.999], 'eps': 1e-08, 'amsgrad': False}, 'trust_ncg': {'max_trust_radius': 1000.0, 'initial_trust_radius': 0.05, 'eta': 0.15, 'gtol': 1e-05}}
def_vertices = apply_deformation_transfer(def_matrix, vertices, faces)
if mask_ids is None:
f_sel = np.ones_like(body_model.faces[:, 0], dtype=np.bool_)
else:
f_per_v = [[] for _ in range(body_model.get_num_verts())]
[f_per_v[vv].append(iff) for iff, ff in enumerate(body_model.faces)
for vv in ff]
f_sel = list(set(tuple(sum([f_per_v[vv] for vv in mask_ids], []))))
vpe = get_vertices_per_edge(
body_model.v_template.detach().cpu().numpy(), body_model.faces[f_sel])
def log_closure():
return summary_closure(def_vertices, var_dict, body_model,
mask_ids=mask_ids)
# edge_fitting_cfg = exp_cfg.get('edge_fitting', {})
edge_fitting_cfg = {'per_part': False, 'reduction': 'mean'}
edge_loss = build_loss(type='vertex-edge', gt_edges=vpe, est_edges=vpe,
**edge_fitting_cfg)
edge_loss = edge_loss.to(device=device)
# vertex_fitting_cfg = exp_cfg.get('vertex_fitting', {})
vertex_fitting_cfg = {}
vertex_loss = build_loss(**vertex_fitting_cfg)
vertex_loss = vertex_loss.to(device=device)
per_part = edge_fitting_cfg.get('per_part', True)
logger.info(f'Per-part: {per_part}')
# Optimize edge-based loss to initialize pose
if per_part:
for key, var in tqdm(var_dict.items(), desc='Parts'):
if 'pose' not in key:
continue
for jidx in tqdm(range(var.shape[1]), desc='Joints'):
part = torch.zeros(
[batch_size, 3], dtype=dtype, device=device,
requires_grad=True)
# Build the optimizer for the current part
optimizer_dict = build_optimizer([part], optim_cfg)
closure = build_edge_closure(
body_model, var_dict, edge_loss, optimizer_dict,
def_vertices, per_part=per_part, part_key=key, jidx=jidx,
part=part)
minimize(optimizer_dict['optimizer'], closure,
params=[part],
summary_closure=log_closure,
summary_steps=summary_steps,
interactive=interactive,
**optim_cfg)
with torch.no_grad():
var[:, jidx] = part
else:
optimizer_dict = build_optimizer(list(var_dict.values()), optim_cfg)
closure = build_edge_closure(
body_model, var_dict, edge_loss, optimizer_dict,
def_vertices, per_part=per_part)
minimize(optimizer_dict['optimizer'], closure,
params=var_dict.values(),
summary_closure=log_closure,
summary_steps=summary_steps,
interactive=interactive,
**optim_cfg)
if 'translation' in var_dict:
optimizer_dict = build_optimizer([var_dict['translation']], optim_cfg)
closure = build_vertex_closure(
body_model, var_dict,
optimizer_dict,
def_vertices,
vertex_loss=vertex_loss,
mask_ids=mask_ids,
per_part=False,
params_to_opt=[var_dict['translation']],
)
# Optimize translation
minimize(optimizer_dict['optimizer'],
closure,
params=[var_dict['translation']],
summary_closure=log_closure,
summary_steps=summary_steps,
interactive=interactive,
**optim_cfg)
# Optimize all model parameters with vertex-based loss
optimizer_dict = build_optimizer(list(var_dict.values()), optim_cfg)
closure = build_vertex_closure(
body_model, var_dict,
optimizer_dict,
def_vertices,
vertex_loss=vertex_loss,
per_part=False,
mask_ids=mask_ids)
minimize(optimizer_dict['optimizer'], closure,
params=list(var_dict.values()),
summary_closure=log_closure,
summary_steps=summary_steps,
interactive=interactive,
**optim_cfg)
param_dict = {}
for key, var in var_dict.items():
# Decode the axis-angles
if 'pose' in key or 'orient' in key:
param_dict[key] = batch_rodrigues(
var.reshape(-1, 3)).reshape(len(var), -1, 3, 3)
else:
# Simply pass the variable
param_dict[key] = var
body_model_output = body_model(
return_full_pose=True, get_skin=True, **param_dict)
keys = ["vertices", "joints", "betas", "global_orient", "body_pose", "left_hand_pose", "right_hand_pose", "full_pose"]
for key in keys:
var_dict[key] = getattr(body_model_output, key)
var_dict['faces'] = body_model.faces
for key in var_dict.keys():
try:
var_dict[key] = var_dict[key].detach().cpu().numpy()
except:
pass
return var_dict
|