|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoProcessor |
|
from PIL import Image |
|
|
|
|
|
MODEL_NAME = "microsoft/Phi-3.5-vision-instruct" |
|
DESCRIPTION = "# [Phi-3.5-vision Demo](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)" |
|
DEVICE = "cuda" |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").to(DEVICE).eval() |
|
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) |
|
|
|
def run_example(image, text_input, model_id): |
|
|
|
prompt = f"{text_input}\n" |
|
image = Image.fromarray(image).convert("RGB") |
|
|
|
|
|
inputs = processor(prompt, image, return_tensors="pt").to(DEVICE) |
|
generate_ids = model.generate(**inputs, max_new_tokens=1000, eos_token_id=processor.tokenizer.eos_token_id) |
|
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] |
|
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
|
return response |
|
|
|
css = """ |
|
#output { |
|
height: 500px; |
|
overflow: auto; |
|
border: 1px solid #ccc; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Tab(label="Phi-3.5 Input"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_img = gr.Image(label="Input Picture") |
|
text_input = gr.Textbox(label="Question") |
|
submit_btn = gr.Button(value="Submit") |
|
with gr.Column(): |
|
output_text = gr.Textbox(label="Output Text") |
|
submit_btn.click(run_example, inputs=[input_img, text_input, MODEL_NAME], outputs=output_text) |
|
|
|
demo.launch(debug=True) |