KevSun commited on
Commit
64b2f00
·
verified ·
1 Parent(s): 0a8c4f3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -7
app.py CHANGED
@@ -30,12 +30,9 @@ if st.button("Predict"):
30
  # Convert to numpy array if necessary
31
  predicted_scores = predictions.numpy()
32
 
33
- # Apply a significant reduction to lower the scores
34
- target_average_score = 6.0
35
- current_average_score = np.mean(predicted_scores)
36
- reduction_amount = current_average_score - target_average_score
37
-
38
- adjusted_scores = predicted_scores - reduction_amount
39
 
40
  # Ensure scores do not go below zero
41
  adjusted_scores = np.maximum(adjusted_scores, 0)
@@ -44,8 +41,8 @@ if st.button("Predict"):
44
  normalized_scores = (adjusted_scores / adjusted_scores.max()) * 9 # Scale to 9
45
 
46
  # Apply an additional reduction to the overall score if needed
 
47
  overall_score_index = len(normalized_scores) - 1
48
- additional_reduction = 2.0 # Adjust this value as needed
49
  normalized_scores[overall_score_index] = max(normalized_scores[overall_score_index] - additional_reduction, 0)
50
 
51
  # Round the scores
 
30
  # Convert to numpy array if necessary
31
  predicted_scores = predictions.numpy()
32
 
33
+ # Apply uniform reduction (e.g., reduce by a factor)
34
+ reduction_factor = 0.7 # Reduce scores by 30%
35
+ adjusted_scores = predicted_scores * reduction_factor
 
 
 
36
 
37
  # Ensure scores do not go below zero
38
  adjusted_scores = np.maximum(adjusted_scores, 0)
 
41
  normalized_scores = (adjusted_scores / adjusted_scores.max()) * 9 # Scale to 9
42
 
43
  # Apply an additional reduction to the overall score if needed
44
+ additional_reduction = 1.0 # Adjust this value as needed
45
  overall_score_index = len(normalized_scores) - 1
 
46
  normalized_scores[overall_score_index] = max(normalized_scores[overall_score_index] - additional_reduction, 0)
47
 
48
  # Round the scores