Spaces:
Running
on
T4
Running
on
T4
Given the following task description: | |
[input.txt] | |
Write a complete CUDA program (.cu file) that solves this task using a basic and correct algorithm. The implementation should include a kernel function and the main function that tests it. | |
There are 5 sets of binary input data. The main function should test all five datasets. If all of them pass, the program should print "T", otherwise print "F". The output must strictly be either "T" or "F". Do not write any extra output. | |
Here is a reference style for the structure of the .cu file: | |
```cu | |
#include <iostream> | |
#include <cuda_runtime.h> | |
#include <device_launch_parameters.h> | |
#include <cmath> | |
#include <fstream> | |
#include <vector> | |
#define C 10 | |
__global__ void cross_entropy_kernel(const float* logits, const int* labels, float* loss_sum, int N) { | |
int j = blockIdx.x * blockDim.x + threadIdx.x; | |
if (j >= N) return; | |
float max_logit = -1e20f; | |
for (int k = 0; k < C; ++k) { | |
float z = logits[j * C + k]; | |
if (z > max_logit) max_logit = z; | |
} | |
float exp_sum = 0.0f; | |
for (int k = 0; k < C; ++k) { | |
exp_sum += expf(logits[j * C + k] - max_logit); | |
} | |
float log_softmax_sum = logf(exp_sum); | |
float loss_j = log_softmax_sum + max_logit - logits[j * C + labels[j]]; | |
atomicAdd(loss_sum, loss_j / N); | |
} | |
void read_binary_float(const std::string& filename, float* data, size_t size) { | |
std::ifstream in(filename, std::ios::binary); | |
if (!in) { | |
std::cerr << "Cannot open: " << filename << std::endl; | |
exit(1); | |
} | |
in.read(reinterpret_cast<char*>(data), size * sizeof(float)); | |
in.close(); | |
} | |
void read_binary_int(const std::string& filename, int* data, size_t size) { | |
std::ifstream in(filename, std::ios::binary); | |
if (!in) { | |
std::cerr << "Cannot open: " << filename << std::endl; | |
exit(1); | |
} | |
in.read(reinterpret_cast<char*>(data), size * sizeof(int)); | |
in.close(); | |
} | |
// test | |
bool compare_scalar(float a, float b, float tol = 1e-2f) { | |
return fabs(a - b) < tol; | |
} | |
int main() { | |
std::vector<size_t> Ns = {1<<14, 1<<16, 1<<18, 1<<20, 1<<22}; | |
bool all_match = true; | |
for (int idx = 0; idx < Ns.size(); ++idx) { | |
size_t N = Ns[idx]; | |
size_t logits_size = N * C; | |
size_t logits_bytes = logits_size * sizeof(float); | |
size_t labels_bytes = N * sizeof(int); | |
// test | |
std::string logits_file = "data/ce_logits_" + std::to_string(idx + 1) + ".bin"; | |
std::string labels_file = "data/ce_labels_" + std::to_string(idx + 1) + ".bin"; | |
std::string ref_file = "data/ce_ref_" + std::to_string(idx + 1) + ".bin"; | |
float* h_logits = (float*)malloc(logits_bytes); | |
int* h_labels = (int*)malloc(labels_bytes); | |
float h_ref; | |
read_binary_float(logits_file, h_logits, logits_size); | |
read_binary_int(labels_file, h_labels, N); | |
read_binary_float(ref_file, &h_ref, 1); | |
float *d_logits, *d_loss; | |
int* d_labels; | |
cudaMalloc(&d_logits, logits_bytes); | |
cudaMalloc(&d_labels, labels_bytes); | |
cudaMalloc(&d_loss, sizeof(float)); | |
cudaMemcpy(d_logits, h_logits, logits_bytes, cudaMemcpyHostToDevice); | |
cudaMemcpy(d_labels, h_labels, labels_bytes, cudaMemcpyHostToDevice); | |
cudaMemset(d_loss, 0, sizeof(float)); | |
int threads = 256; | |
int blocks = (N + threads - 1) / threads; | |
cross_entropy_kernel<<<blocks, threads>>>(d_logits, d_labels, d_loss, N); | |
float h_loss; | |
cudaMemcpy(&h_loss, d_loss, sizeof(float), cudaMemcpyDeviceToHost); | |
if (!compare_scalar(h_loss, h_ref)) { | |
std::cout << "F" << std::endl; | |
all_match = false; | |
cudaFree(d_logits); cudaFree(d_labels); cudaFree(d_loss); | |
free(h_logits); free(h_labels); | |
break; | |
} | |
cudaFree(d_logits); cudaFree(d_labels); cudaFree(d_loss); | |
free(h_logits); free(h_labels); | |
} | |
if (all_match) std::cout << "T" << std::endl; | |
return 0; | |
} | |
``` | |
You also need to write the Python script gen_test_data.py to generate the test binary files. Use the following as a style reference. Make sure all binary files are stored under a folder named data/. Avoid generating extremely large data. Suggested sizes are shown below: | |
```py | |
import numpy as np | |
import os | |
np.random.seed(30) | |
C = 10 | |
sizes = [2**14, 2**16, 2**18, 2**20, 2**22] | |
for idx, N in enumerate(sizes): | |
logits = (np.random.randn(N, C) * 3).astype(np.float32) | |
labels = np.random.randint(0, C, size=N, dtype=np.int32) | |
logits_max = logits.max(axis=1, keepdims=True) | |
exp_logits = np.exp(logits - logits_max) | |
log_sum_exp = np.log(exp_logits.sum(axis=1)) | |
losses = log_sum_exp + logits_max[:, 0] - logits[np.arange(N), labels] | |
avg_loss = losses.mean().astype(np.float32) | |
logits.tofile(f"ce_logits_{idx+1}.bin") | |
labels.tofile(f"ce_labels_{idx+1}.bin") | |
np.array([avg_loss], dtype=np.float32).tofile(f"ce_ref_{idx+1}.bin") | |
``` | |
You should generate these two code blocks at once. |