KennethTM commited on
Commit
1594055
·
verified ·
1 Parent(s): 35cf863

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +126 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from gradio import Interface, File, Dropdown, Textbox, Slider
2
+ import json
3
+ from gliner import GLiNER
4
+ from doctr.io import DocumentFile
5
+ from doctr.models import ocr_predictor
6
+
7
+ class DoctrHandler:
8
+ def __init__(self):
9
+ self.model = ocr_predictor(det_arch="fast_base", reco_arch="crnn_vgg16_bn", pretrained=True)
10
+
11
+ def extract_text(self, file_path):
12
+ try:
13
+ # Handle both PDF and image files
14
+ doc = DocumentFile.from_pdf(file_path) if file_path.endswith('.pdf') else DocumentFile.from_images(file_path)
15
+ # Perform OCR
16
+ result = self.model(doc)
17
+ # Extract text from result
18
+ text = ""
19
+ for page in result.pages:
20
+ for block in page.blocks:
21
+ for line in block.lines:
22
+ for word in line.words:
23
+ text += word.value + " "
24
+ return text.strip()
25
+ except Exception as e:
26
+ raise Exception(f"Error during OCR processing: {str(e)}")
27
+
28
+ class GlinerHandler:
29
+ def __init__(self):
30
+ self.max_length = 384
31
+ self.model = GLiNER.from_pretrained("urchade/gliner_multi-v2.1", max_length=self.max_length)
32
+
33
+ def predict_entities(self, text, labels, threshold):
34
+
35
+ entities = self.model.predict_entities(text, labels, threshold=threshold)
36
+
37
+ return entities
38
+
39
+ # Initialize handlers
40
+ ocr_handler = DoctrHandler()
41
+ ner_handler = GlinerHandler()
42
+
43
+ # Default entities
44
+ DEFAULT_ENTITIES = ["name", "person", "bank account number", "email", "address", "phone number", "date", "currency", "amount", "document number", "iban", "country"]
45
+
46
+ def process_file(uploaded_file, selected_entities, custom_entities, threshold=0.5):
47
+
48
+ # Input validation
49
+ if not selected_entities and not custom_entities:
50
+ return json.dumps({
51
+ "message": "Please select or provide at least one entity to search for",
52
+ "hits": 0,
53
+ "searched_for": [],
54
+ "entities": []
55
+ }, indent=4)
56
+
57
+ # Handle no file uploaded
58
+ if not uploaded_file:
59
+ return json.dumps({
60
+ "message": "No file uploaded",
61
+ "hits": 0,
62
+ "searched_for": [],
63
+ "entities": []
64
+ }, indent=4)
65
+
66
+ # Convert custom entities string to list and clean whitespace
67
+ custom_entity_list = [e.strip() for e in custom_entities.split(",") if e.strip()] if custom_entities else []
68
+
69
+ # Combine default and custom entities
70
+ all_entities = selected_entities + custom_entity_list
71
+
72
+ # Perform OCR on the uploaded file
73
+ extracted_text = ocr_handler.extract_text(uploaded_file.name)
74
+
75
+ # Perform NER on the extracted text with threshold
76
+ entities = ner_handler.predict_entities(extracted_text, all_entities, threshold)
77
+
78
+ if not entities:
79
+ return json.dumps({
80
+ "message": "No entities were found in the document",
81
+ "hits": 0,
82
+ "searched_for": all_entities,
83
+ "entities": []
84
+ }, indent=4)
85
+
86
+ # Clean and sort entities
87
+ cleaned_entities = []
88
+ for entity in entities:
89
+ cleaned_entity = {
90
+ "text": entity["text"],
91
+ "label": entity["label"],
92
+ "confidence": entity["score"]
93
+ }
94
+ cleaned_entities.append(cleaned_entity)
95
+
96
+ # Sort by confidence score in descending order
97
+ cleaned_entities.sort(key=lambda x: x["confidence"], reverse=True)
98
+
99
+ # Return structured response
100
+ response = {
101
+ "message": "Document destroyed successfully!",
102
+ "hits": len(cleaned_entities),
103
+ "searched_for": all_entities,
104
+ "entities": cleaned_entities
105
+ }
106
+
107
+ return json.dumps(response, indent=4)
108
+
109
+
110
+ # Create Gradio interface
111
+ iface = Interface(
112
+ fn=process_file,
113
+ inputs=[
114
+ File(label="Upload Document (PDF or Image)"),
115
+ Dropdown(choices=DEFAULT_ENTITIES, label="Select Entities", multiselect=True),
116
+ Textbox(label="Custom Entities (comma-separated)", placeholder="entity1, entity2, ..."),
117
+ Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label="Confidence Threshold")
118
+ ],
119
+ outputs=Textbox(label="Extracted Entities (JSON)"),
120
+ title="DocDestroyer11000",
121
+ allow_flagging=False,
122
+ description="Extract valuable information from your documents in a snap! Upload your PDFs or images, select the entities you care about et started now and watch your documents be **destroyed** (or in other words - turned into JSON)! 🚀<br>Tech: Copilot/Claude Sonnet + https://mindee.github.io/doctr/ + https://huggingface.co/urchade/gliner_multi-v2.1"
123
+ )
124
+
125
+ if __name__ == "__main__":
126
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ --index-url https://download.pytorch.org/whl/cpu
2
+ torch
3
+ torchvision
4
+ gliner
5
+ python-doctr
6
+ gradio