Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ from PIL import Image
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
from torchvision import transforms
|
6 |
-
from torchvision.models import vit_b_16, ViT_B_16_Weights
|
7 |
import pandas as pd
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from langchain_huggingface import HuggingFaceEmbeddings
|
@@ -31,7 +31,6 @@ nest_asyncio.apply()
|
|
31 |
|
32 |
st.set_page_config(page_title="DermBOT", page_icon="🧬", layout="centered")
|
33 |
|
34 |
-
#os.environ["PGVECTOR_CONNECTION_STRING"] = "postgresql+psycopg2://postgres:postgres@localhost:5432/VectorDB"
|
35 |
|
36 |
# === Model Selection ===
|
37 |
available_models = ["OpenAI GPT-4o", "LLaMA 3", "Gemini Pro"]
|
@@ -49,10 +48,6 @@ collection_name = "ks_collection_1.5BE"
|
|
49 |
#local_embedding = SentenceTransformerEmbeddings(model=embedding_model)
|
50 |
|
51 |
|
52 |
-
#local_embedding = HuggingFaceEmbeddings(
|
53 |
-
# model_name="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
54 |
-
# model_kwargs={"trust_remote_code": True, "device":"cpu"}
|
55 |
-
#)
|
56 |
|
57 |
local_embedding = HuggingFaceEmbeddings(
|
58 |
model_name="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
@@ -143,25 +138,33 @@ class SkinViT(nn.Module):
|
|
143 |
def __init__(self, num_classes):
|
144 |
super(SkinViT, self).__init__()
|
145 |
self.model = vit_b_16(weights=ViT_B_16_Weights.DEFAULT)
|
146 |
-
in_features = self.model.heads
|
147 |
-
self.model.heads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
def forward(self, x):
|
149 |
return self.model(x)
|
150 |
|
151 |
#multilabel_model = torch.load("D:/DR/RAG/BestModels2703/skin_vit_fold10.pth", map_location='cpu')
|
152 |
#multiclass_model = torch.load("D:/DR/RAG/BestModels2703/best_dermnet_vit.pth", map_location='cpu')
|
153 |
|
154 |
-
#
|
155 |
multilabel_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="skin_vit_fold10_sd.pth")
|
156 |
multiclass_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="best_dermnet_vit_sd.pth")
|
157 |
|
158 |
-
# Load models
|
159 |
multilabel_model = SkinViT(num_classes=len(multilabel_class_names))
|
160 |
-
multiclass_model =
|
161 |
-
|
162 |
multilabel_model.load_state_dict(torch.load(multilabel_model_path, map_location="cpu"))
|
163 |
multiclass_model.load_state_dict(torch.load(multiclass_model_path, map_location="cpu"))
|
164 |
-
|
165 |
multilabel_model.eval()
|
166 |
multiclass_model.eval()
|
167 |
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
from torchvision import transforms
|
6 |
+
from torchvision.models import vit_b_16, vit_l_16, ViT_B_16_Weights, ViT_L_16_Weights
|
7 |
import pandas as pd
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
31 |
|
32 |
st.set_page_config(page_title="DermBOT", page_icon="🧬", layout="centered")
|
33 |
|
|
|
34 |
|
35 |
# === Model Selection ===
|
36 |
available_models = ["OpenAI GPT-4o", "LLaMA 3", "Gemini Pro"]
|
|
|
48 |
#local_embedding = SentenceTransformerEmbeddings(model=embedding_model)
|
49 |
|
50 |
|
|
|
|
|
|
|
|
|
51 |
|
52 |
local_embedding = HuggingFaceEmbeddings(
|
53 |
model_name="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
|
|
138 |
def __init__(self, num_classes):
|
139 |
super(SkinViT, self).__init__()
|
140 |
self.model = vit_b_16(weights=ViT_B_16_Weights.DEFAULT)
|
141 |
+
in_features = self.model.heads.head.in_features
|
142 |
+
self.model.heads.head = nn.Linear(in_features, num_classes)
|
143 |
+
|
144 |
+
def forward(self, x):
|
145 |
+
return self.model(x)
|
146 |
+
|
147 |
+
class DermNetViT(nn.Module):
|
148 |
+
def __init__(self, num_classes):
|
149 |
+
super(DermNetViT, self).__init__()
|
150 |
+
self.model = vit_l_16(weights=ViT_L_16_Weights.DEFAULT)
|
151 |
+
in_features = self.model.heads.head.in_features
|
152 |
+
self.model.heads.head = nn.Linear(in_features, num_classes)
|
153 |
+
|
154 |
def forward(self, x):
|
155 |
return self.model(x)
|
156 |
|
157 |
#multilabel_model = torch.load("D:/DR/RAG/BestModels2703/skin_vit_fold10.pth", map_location='cpu')
|
158 |
#multiclass_model = torch.load("D:/DR/RAG/BestModels2703/best_dermnet_vit.pth", map_location='cpu')
|
159 |
|
160 |
+
# === Load Model State Dicts ===
|
161 |
multilabel_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="skin_vit_fold10_sd.pth")
|
162 |
multiclass_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="best_dermnet_vit_sd.pth")
|
163 |
|
|
|
164 |
multilabel_model = SkinViT(num_classes=len(multilabel_class_names))
|
165 |
+
multiclass_model = DermNetViT(num_classes=len(multiclass_class_names))
|
|
|
166 |
multilabel_model.load_state_dict(torch.load(multilabel_model_path, map_location="cpu"))
|
167 |
multiclass_model.load_state_dict(torch.load(multiclass_model_path, map_location="cpu"))
|
|
|
168 |
multilabel_model.eval()
|
169 |
multiclass_model.eval()
|
170 |
|