File size: 6,043 Bytes
9c8eb77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# dermbot_gradio_app.py
import gradio as gr
from PIL import Image
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision.models import vit_b_16, vit_l_16, ViT_B_16_Weights, ViT_L_16_Weights
from huggingface_hub import hf_hub_download
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from qdrant_client import QdrantClient
from langchain_community.vectorstores import Qdrant
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_openai import ChatOpenAI
import os
import io
from fpdf import FPDF

# === Constants ===
multilabel_class_names = [
    "Vesicle", "Papule", "Macule", "Plaque", "Abscess", "Pustule", "Bulla", "Patch",
    "Nodule", "Ulcer", "Crust", "Erosion", "Excoriation", "Atrophy", "Exudate", "Purpura/Petechiae",
    "Fissure", "Induration", "Xerosis", "Telangiectasia", "Scale", "Scar", "Friable", "Sclerosis",
    "Pedunculated", "Exophytic/Fungating", "Warty/Papillomatous", "Dome-shaped", "Flat topped",
    "Brown(Hyperpigmentation)", "Translucent", "White(Hypopigmentation)", "Purple", "Yellow",
    "Black", "Erythema", "Comedo", "Lichenification", "Blue", "Umbilicated", "Poikiloderma",
    "Salmon", "Wheal", "Acuminate", "Burrow", "Gray", "Pigmented", "Cyst"
]

multiclass_class_names = [
    "systemic", "hair", "drug_reactions", "uriticaria", "acne", "light",
    "autoimmune", "papulosquamous", "eczema", "skincancer",
    "benign_tumors", "bacteria_parasetic_infections", "fungal_infections", "viral_skin_infections"
]

# === Models ===
class SkinViT(nn.Module):
    def __init__(self, num_classes):
        super().__init__()
        self.model = vit_b_16(weights=ViT_B_16_Weights.DEFAULT)
        in_features = self.model.heads.head.in_features
        self.model.heads.head = nn.Linear(in_features, num_classes)

    def forward(self, x):
        return self.model(x)

class DermNetViT(nn.Module):
    def __init__(self, num_classes):
        super().__init__()
        self.model = vit_l_16(weights=ViT_L_16_Weights.DEFAULT)
        in_features = self.model.heads[0].in_features
        self.model.heads = nn.Sequential(
            nn.Linear(in_features, 1024),
            nn.ReLU(),
            nn.Linear(1024, num_classes)
        )

    def forward(self, x):
        return self.model(x)

# === Load Model State Dicts ===
multilabel_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="skin_vit_fold10_sd.pth")
multiclass_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="best_dermnet_vit_sd.pth")

multilabel_model = SkinViT(num_classes=len(multilabel_class_names))
multiclass_model = DermNetViT(num_classes=len(multiclass_class_names))
multilabel_model.load_state_dict(torch.load(multilabel_model_path, map_location="cpu"))
multiclass_model.load_state_dict(torch.load(multiclass_model_path, map_location="cpu"))
multilabel_model.eval()
multiclass_model.eval()

# === RAG Setup ===
llm = ChatOpenAI(model="gpt-4o", temperature=0.2)

qdrant_client = QdrantClient(
    url="https://2715ddd8-647f-40ee-bca4-9027d193e8aa.us-east-1-0.aws.cloud.qdrant.io",
    api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.HXzezXdWMFeeR16F7zvqgjzsqrcm8hqa-StXdToFP9Q"
)

local_embedding = HuggingFaceEmbeddings(
    model_name="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
    model_kwargs={"trust_remote_code": True, "device": "cpu"}
)

vector_store = Qdrant(
    client=qdrant_client,
    collection_name="ks_collection_1.5BE",
    embeddings=local_embedding
)

retriever = vector_store.as_retriever()


AI_PROMPT_TEMPLATE = """You are an AI-assisted Dermatology Chatbot, specializing in diagnosing and educating users about skin diseases.
You provide accurate, compassionate, and detailed explanations while using correct medical terminology.

Guidelines:
1. Symptoms - Explain in simple terms with proper medical definitions.
2. Causes - Include genetic, environmental, and lifestyle-related risk factors.
3. Medications & Treatments - Provide common prescription and over-the-counter treatments.
4. Warnings & Emergencies - Always recommend consulting a licensed dermatologist.
5. Emergency Note - If symptoms worsen or include difficulty breathing, **advise calling 911 immediately.

Query: {question}
Relevant Information: {context}
Answer:
"""



prompt_template = PromptTemplate(template=AI_PROMPT_TEMPLATE, input_variables=["question", "context"])

rag_chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=retriever,
    chain_type="stuff",
    chain_type_kwargs={"prompt": prompt_template, "document_variable_name": "context"}
)

# === Inference ===
def run_diagnosis(image):
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5])
    ])
    input_tensor = transform(image).unsqueeze(0)
    with torch.no_grad():
        probs_multi = torch.sigmoid(multilabel_model(input_tensor)).squeeze().numpy()
        predicted_multi = [multilabel_class_names[i] for i, p in enumerate(probs_multi) if p > 0.5]
        pred_idx = torch.argmax(multiclass_model(input_tensor), dim=1).item()
        predicted_single = multiclass_class_names[pred_idx]
    return predicted_multi, predicted_single

# === Chat Function ===
def chat_with_bot(image, history=[]):
    predicted_multi, predicted_single = run_diagnosis(image)
    query = f"What are my treatment options for {predicted_multi} and {predicted_single}?"
    response = rag_chain.invoke(query)["result"]
    history.append((f"User: {query}", f"AI: {response}"))
    return response, history

# === Gradio App ===
with gr.Blocks() as demo:
    gr.Markdown("# 🧬 DermBOT — Skin AI Assistant")
    chatbot = gr.Chatbot()
    img_input = gr.Image(type="pil")
    output_text = gr.Textbox(label="DermBOT Response")
    btn = gr.Button("Analyze & Diagnose")

    state = gr.State([])
    btn.click(fn=chat_with_bot, inputs=[img_input, state], outputs=[output_text, state])

if __name__ == "__main__":
    demo.launch()