|
import gradio as gr |
|
import pandas as pd |
|
from detoxify import Detoxify |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
|
|
tox_model = Detoxify('multilingual') |
|
ai_tokenizer = AutoTokenizer.from_pretrained("openai-community/roberta-base-openai-detector") |
|
ai_model = AutoModelForSequenceClassification.from_pretrained("openai-community/roberta-base-openai-detector") |
|
|
|
|
|
TOXICITY_THRESHOLD = 0.7 |
|
AI_THRESHOLD = 0.5 |
|
|
|
def detect_ai(text): |
|
with torch.no_grad(): |
|
inputs = ai_tokenizer(text, return_tensors="pt", truncation=True, padding=True) |
|
logits = ai_model(**inputs).logits |
|
probs = torch.softmax(logits, dim=1).squeeze().tolist() |
|
return round(probs[1], 4) |
|
|
|
def classify_comments(comment_list): |
|
results = tox_model.predict(comment_list) |
|
df = pd.DataFrame(results, index=comment_list).round(4) |
|
df.columns = [col.replace("_", " ").title().replace(" ", "_") for col in df.columns] |
|
df.columns = [col.replace("_", " ") for col in df.columns] |
|
df["⚠️ Warning"] = df.apply( |
|
lambda row: "⚠️ High Risk" if any(score > TOXICITY_THRESHOLD for score in row) else "✅ Safe", |
|
axis=1 |
|
) |
|
df["🧪 AI Probability"] = [detect_ai(c) for c in df.index] |
|
df["🧪 AI Detection"] = df["🧪 AI Probability"].apply( |
|
lambda x: "🤖 Likely AI" if x > AI_THRESHOLD else "🧍 Human" |
|
) |
|
return df |
|
|
|
def run_classification(text_input, csv_file): |
|
comment_list = [] |
|
|
|
if text_input.strip(): |
|
comment_list += [c.strip() for c in text_input.strip().split('\n') if c.strip()] |
|
|
|
if csv_file: |
|
df = pd.read_csv(csv_file.name) |
|
if 'comment' not in df.columns: |
|
return "CSV must contain a 'comment' column.", None |
|
comment_list += df['comment'].astype(str).tolist() |
|
|
|
if not comment_list: |
|
return "Please provide comments via text or CSV.", None |
|
|
|
df = classify_comments(comment_list) |
|
csv_data = df.copy() |
|
csv_data.insert(0, "Comment", df.index) |
|
return df, ("toxicity_predictions.csv", csv_data.to_csv(index=False).encode()) |
|
|
|
|
|
with gr.Blocks(title="🌍 Toxic Comment & AI Detector") as app: |
|
gr.Markdown("## 🌍 Toxic Comment & AI Detector") |
|
gr.Markdown("Detects multilingual toxicity and whether a comment is AI-generated. Paste comments or upload a CSV.") |
|
|
|
with gr.Row(): |
|
text_input = gr.Textbox(lines=8, label="💬 Paste Comments (one per line)") |
|
csv_input = gr.File(label="📥 Upload CSV (must have 'comment' column)") |
|
|
|
submit_button = gr.Button("🔍 Analyze Comments") |
|
output_table = gr.Dataframe(label="📊 Prediction Results") |
|
download_button = gr.File(label="📤 Download CSV") |
|
|
|
submit_button.click(fn=run_classification, inputs=[text_input, csv_input], outputs=[output_table, download_button]) |
|
|
|
if __name__ == "__main__": |
|
app.launch() |