Spaces:
Build error
Build error
Upload 3 files
Browse files- Dockerfile.txt +17 -0
- customer_support_agent.py +164 -0
- requirements.txt +3 -0
Dockerfile.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official Python image
|
2 |
+
FROM python:3.10
|
3 |
+
|
4 |
+
# Set the working directory
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy all files to the container
|
8 |
+
COPY . .
|
9 |
+
|
10 |
+
# Install dependencies
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Expose the Streamlit port
|
14 |
+
EXPOSE 8501
|
15 |
+
|
16 |
+
# Run the Streamlit app
|
17 |
+
CMD ["streamlit", "run", "customer_support_agent.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
customer_support_agent.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Optimized AI Customer Support Agent with Memory
|
3 |
+
------------------------------------------------
|
4 |
+
This Streamlit application integrates an AI-powered customer support agent
|
5 |
+
that remembers past interactions using memory storage (Qdrant via Mem0).
|
6 |
+
|
7 |
+
Key Features:
|
8 |
+
- Uses OpenAI's GPT-4 for generating responses.
|
9 |
+
- Stores and retrieves relevant user interactions from memory.
|
10 |
+
- Generates synthetic customer data for testing.
|
11 |
+
- Allows users to view their stored memory and customer profile.
|
12 |
+
|
13 |
+
Enhancements in this optimized version:
|
14 |
+
- Improved readability and structure.
|
15 |
+
- Better error handling and logging.
|
16 |
+
- Removed redundant checks and streamlined memory retrieval.
|
17 |
+
- Clearer logic separation for querying, memory handling, and synthetic data generation.
|
18 |
+
"""
|
19 |
+
|
20 |
+
import streamlit as st
|
21 |
+
from openai import OpenAI
|
22 |
+
from qdrant_client import QdrantClient
|
23 |
+
from mem0 import Memory
|
24 |
+
import os
|
25 |
+
import json
|
26 |
+
from datetime import datetime, timedelta
|
27 |
+
|
28 |
+
# Streamlit UI Setup
|
29 |
+
st.title("AI Customer Support Agent with Memory")
|
30 |
+
st.caption("Chat with a customer support assistant who recalls past interactions.")
|
31 |
+
|
32 |
+
# OpenAI API Key Input
|
33 |
+
openai_api_key = st.text_input("Enter OpenAI API Key", type="password")
|
34 |
+
if openai_api_key:
|
35 |
+
os.environ['OPENAI_API_KEY'] = openai_api_key
|
36 |
+
|
37 |
+
class CustomerSupportAIAgent:
|
38 |
+
def __init__(self):
|
39 |
+
self.app_id = "customer-support"
|
40 |
+
|
41 |
+
# Initialize Qdrant client separately
|
42 |
+
try:
|
43 |
+
self.qdrant_client = QdrantClient(host="localhost", port=6333)
|
44 |
+
except Exception as e:
|
45 |
+
st.error(f"Failed to connect to Qdrant: {e}")
|
46 |
+
st.stop()
|
47 |
+
|
48 |
+
# Pass the initialized Qdrant client to Memory
|
49 |
+
try:
|
50 |
+
self.memory = Memory(self.qdrant_client)
|
51 |
+
except Exception as e:
|
52 |
+
st.error(f"Failed to initialize memory: {e}")
|
53 |
+
st.stop()
|
54 |
+
|
55 |
+
# Initialize OpenAI client
|
56 |
+
self.client = OpenAI()
|
57 |
+
|
58 |
+
|
59 |
+
def handle_query(self, query, user_id):
|
60 |
+
"""Processes user queries by searching memory and generating AI responses."""
|
61 |
+
try:
|
62 |
+
# Retrieve relevant past memories
|
63 |
+
relevant_memories = self.memory.search(query=query, user_id=user_id)
|
64 |
+
context = "\n".join(f"- {m['memory']}" for m in relevant_memories.get("results", []) if "memory" in m)
|
65 |
+
full_prompt = f"Relevant past information:\n{context}\nCustomer: {query}\nSupport Agent:"
|
66 |
+
|
67 |
+
# Generate AI response
|
68 |
+
response = self.client.chat.completions.create(
|
69 |
+
model="gpt-4",
|
70 |
+
messages=[
|
71 |
+
{"role": "system", "content": "You are a customer support AI for TechGadgets.com."},
|
72 |
+
{"role": "user", "content": full_prompt}
|
73 |
+
]
|
74 |
+
)
|
75 |
+
answer = response.choices[0].message.content
|
76 |
+
|
77 |
+
# Store conversation in memory
|
78 |
+
for text, role in [(query, "user"), (answer, "assistant")]:
|
79 |
+
self.memory.add(text, user_id=user_id, metadata={"app_id": self.app_id, "role": role})
|
80 |
+
|
81 |
+
return answer
|
82 |
+
except Exception as e:
|
83 |
+
st.error(f"Error handling query: {e}")
|
84 |
+
return "Sorry, I encountered an issue. Please try again."
|
85 |
+
|
86 |
+
def generate_synthetic_data(self, user_id):
|
87 |
+
"""Creates and stores synthetic customer data for testing purposes."""
|
88 |
+
try:
|
89 |
+
today = datetime.now()
|
90 |
+
order_date, expected_delivery = (today - timedelta(days=10)).strftime("%B %d, %Y"), (today + timedelta(days=2)).strftime("%B %d, %Y")
|
91 |
+
prompt = f"""
|
92 |
+
Generate a realistic customer profile for TechGadgets.com user {user_id} with:
|
93 |
+
- Basic details
|
94 |
+
- A recent order (placed on {order_date}, delivery by {expected_delivery})
|
95 |
+
- Order history, shipping address, and past customer service interactions
|
96 |
+
- Shopping preferences
|
97 |
+
Return JSON format.
|
98 |
+
"""
|
99 |
+
|
100 |
+
response = self.client.chat.completions.create(
|
101 |
+
model="gpt-4",
|
102 |
+
messages=[
|
103 |
+
{"role": "system", "content": "Generate realistic customer profiles in JSON."},
|
104 |
+
{"role": "user", "content": prompt}
|
105 |
+
]
|
106 |
+
)
|
107 |
+
|
108 |
+
customer_data = json.loads(response.choices[0].message.content)
|
109 |
+
for key, value in customer_data.items():
|
110 |
+
if isinstance(value, list):
|
111 |
+
for item in value:
|
112 |
+
self.memory.add(json.dumps(item), user_id=user_id, metadata={"app_id": self.app_id, "role": "system"})
|
113 |
+
else:
|
114 |
+
self.memory.add(f"{key}: {json.dumps(value)}", user_id=user_id, metadata={"app_id": self.app_id, "role": "system"})
|
115 |
+
|
116 |
+
return customer_data
|
117 |
+
except Exception as e:
|
118 |
+
st.error(f"Error generating synthetic data: {e}")
|
119 |
+
return None
|
120 |
+
|
121 |
+
# Initialize AI Agent
|
122 |
+
if openai_api_key:
|
123 |
+
support_agent = CustomerSupportAIAgent()
|
124 |
+
|
125 |
+
# Sidebar - Customer ID Input & Actions
|
126 |
+
st.sidebar.title("Customer ID")
|
127 |
+
customer_id = st.sidebar.text_input("Enter Customer ID")
|
128 |
+
|
129 |
+
if customer_id:
|
130 |
+
# Synthetic Data Generation
|
131 |
+
if st.sidebar.button("Generate Synthetic Data"):
|
132 |
+
with st.spinner("Generating data..."):
|
133 |
+
st.session_state.customer_data = support_agent.generate_synthetic_data(customer_id)
|
134 |
+
st.sidebar.success("Data Generated!") if st.session_state.customer_data else st.sidebar.error("Generation Failed.")
|
135 |
+
|
136 |
+
# View Stored Customer Data
|
137 |
+
if st.sidebar.button("View Profile"):
|
138 |
+
st.sidebar.json(st.session_state.get("customer_data", "No data available."))
|
139 |
+
|
140 |
+
# View Memory
|
141 |
+
if st.sidebar.button("View Memory"):
|
142 |
+
memories = support_agent.memory.get_all(user_id=customer_id)
|
143 |
+
st.sidebar.write("\n".join(f"- {m['memory']}" for m in memories.get("results", []) if "memory" in m))
|
144 |
+
else:
|
145 |
+
st.sidebar.error("Enter a Customer ID.")
|
146 |
+
|
147 |
+
# Chat Interface
|
148 |
+
if "messages" not in st.session_state:
|
149 |
+
st.session_state.messages = []
|
150 |
+
|
151 |
+
for msg in st.session_state.messages:
|
152 |
+
with st.chat_message(msg["role"]):
|
153 |
+
st.markdown(msg["content"])
|
154 |
+
|
155 |
+
query = st.chat_input("How can I assist you today?")
|
156 |
+
if query and customer_id:
|
157 |
+
st.session_state.messages.append({"role": "user", "content": query})
|
158 |
+
with st.chat_message("user"): st.markdown(query)
|
159 |
+
with st.spinner("Generating response..."):
|
160 |
+
answer = support_agent.handle_query(query, user_id=customer_id)
|
161 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
162 |
+
with st.chat_message("assistant"): st.markdown(answer)
|
163 |
+
else:
|
164 |
+
st.warning("Enter OpenAI API key to use the agent.")
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
openai
|
3 |
+
mem0
|