Add application file
Browse files
app.py
CHANGED
@@ -125,13 +125,13 @@ g = gr.Interface(
|
|
125 |
fn=evaluate,
|
126 |
inputs=[
|
127 |
gr.components.Textbox(
|
128 |
-
lines=2, label="Instruction", placeholder="
|
129 |
),
|
130 |
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
|
131 |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
|
132 |
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
|
133 |
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
|
134 |
-
gr.components.Slider(minimum=1, maximum=4, step=1, value=
|
135 |
gr.components.Slider(
|
136 |
minimum=1, maximum=512, step=1, value=128, label="Max tokens"
|
137 |
),
|
@@ -143,7 +143,7 @@ g = gr.Interface(
|
|
143 |
)
|
144 |
],
|
145 |
title="π¦ποΈ LLaMA-E",
|
146 |
-
description="LLaMA-E is
|
147 |
)
|
148 |
g.queue(concurrency_count=1)
|
149 |
g.launch()
|
|
|
125 |
fn=evaluate,
|
126 |
inputs=[
|
127 |
gr.components.Textbox(
|
128 |
+
lines=2, label="Instruction", placeholder="Generate an attractive advertisement for this product."
|
129 |
),
|
130 |
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
|
131 |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
|
132 |
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
|
133 |
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
|
134 |
+
gr.components.Slider(minimum=1, maximum=4, step=1, value=1, label="Beams"),
|
135 |
gr.components.Slider(
|
136 |
minimum=1, maximum=512, step=1, value=128, label="Max tokens"
|
137 |
),
|
|
|
143 |
)
|
144 |
],
|
145 |
title="π¦ποΈ LLaMA-E",
|
146 |
+
description="LLaMA-E is meticulously crafted for e-commerce authoring tasks, incorporating specialized features to excel in generating product descriptions, advertisements, and other related content, as outlined in https://arxiv.org/abs/2308.04913#/. The model can be found at https://huggingface.co/DSMI/LLaMA-E#/. The demo here runs on the CPU. We strongly recommend running the model locally with GPU.",
|
147 |
)
|
148 |
g.queue(concurrency_count=1)
|
149 |
g.launch()
|