File size: 7,761 Bytes
d0afb9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3532f
d0afb9d
 
47332f1
f5b701a
 
d0afb9d
 
 
 
 
 
 
 
 
 
 
1e3532f
d0afb9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3532f
 
d0afb9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import sys

import fire
import gradio as gr
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer

from utils.callbacks import Iteratorize, Stream
from utils.prompter import Prompter

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:  # noqa: E722
    pass

access_token = os.environ.get('HF_TOKEN')

def main(
    load_8bit: bool = True,
    base_model: str = "meta-llama/Llama-2-7b-hf",
    lora_weights: str = "DSMI/LLaMA-E/7b",
    prompt_template: str = "",  # The prompt template to use, will default to alpaca.
    server_name: str = "0.0.0.0",  # Allows to listen on all interfaces by providing '0.
    share_gradio: bool = False,
):
    print("lora_weights: " + str(lora_weights))
    base_model = base_model or os.environ.get("BASE_MODEL", "")
    assert (
        base_model
    ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"

    prompter = Prompter(prompt_template)
    tokenizer = LlamaTokenizer.from_pretrained(base_model, token=access_token)
    if device == "cuda":
        model = LlamaForCausalLM.from_pretrained(
            base_model,
            load_in_8bit=load_8bit,
            torch_dtype=torch.float16,
            device_map="auto",
        )
        model = PeftModel.from_pretrained(
            model,
            lora_weights,
            torch_dtype=torch.float16,
        )
    elif device == "mps":
        model = LlamaForCausalLM.from_pretrained(
            base_model,
            device_map={"": device},
            torch_dtype=torch.float16,
        )
        model = PeftModel.from_pretrained(
            model,
            lora_weights,
            device_map={"": device},
            torch_dtype=torch.float16,
        )
    else:
        model = LlamaForCausalLM.from_pretrained(
            base_model, device_map={"": device}, low_cpu_mem_usage=True
        )
        model = PeftModel.from_pretrained(
            model,
            lora_weights,
            device_map={"": device},
        )

    # unwind broken decapoda-research config
    model.config.pad_token_id = tokenizer.pad_token_id = 0  # unk
    model.config.bos_token_id = 1
    model.config.eos_token_id = 2

    if not load_8bit:
        model.half()  # seems to fix bugs for some users.

    model.eval()
    if torch.__version__ >= "2" and sys.platform != "win32":
        model = torch.compile(model)

    def evaluate(
        instruction,
        input=None,
        temperature=0.1,
        top_p=0.75,
        top_k=40,
        num_beams=4,
        max_new_tokens=128,
        stream_output=False,
        **kwargs,
    ):
        prompt = prompter.generate_prompt(instruction, input)
        inputs = tokenizer(prompt, return_tensors="pt")
        input_ids = inputs["input_ids"].to(device)
        generation_config = GenerationConfig(
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            num_beams=num_beams,
            **kwargs,
        )

        generate_params = {
            "input_ids": input_ids,
            "generation_config": generation_config,
            "return_dict_in_generate": True,
            "output_scores": True,
            "max_new_tokens": max_new_tokens,
        }

        if stream_output:
            # Stream the reply 1 token at a time.
            # This is based on the trick of using 'stopping_criteria' to create an iterator,
            # from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/text_generation.py#L216-L243.

            def generate_with_callback(callback=None, **kwargs):
                kwargs.setdefault(
                    "stopping_criteria", transformers.StoppingCriteriaList()
                )
                kwargs["stopping_criteria"].append(
                    Stream(callback_func=callback)
                )
                with torch.no_grad():
                    model.generate(**kwargs)

            def generate_with_streaming(**kwargs):
                return Iteratorize(
                    generate_with_callback, kwargs, callback=None
                )

            with generate_with_streaming(**generate_params) as generator:
                for output in generator:
                    # new_tokens = len(output) - len(input_ids[0])
                    decoded_output = tokenizer.decode(output)

                    if output[-1] in [tokenizer.eos_token_id]:
                        break

                    yield prompter.get_response(decoded_output)
            return  # early return for stream_output

        # Without streaming
        with torch.no_grad():
            generation_output = model.generate(
                input_ids=input_ids,
                generation_config=generation_config,
                return_dict_in_generate=True,
                output_scores=True,
                max_new_tokens=max_new_tokens,
            )
        s = generation_output.sequences[0]
        output = tokenizer.decode(s)
        yield prompter.get_response(output)

    gr.Interface(
        fn=evaluate,
        inputs=[
            gr.components.Textbox(
                lines=2,
                label="Instruction",
                placeholder="Generate an Ad for the iPhone 14.",
            ),
            gr.components.Textbox(lines=2, label="Input", placeholder="none"),
            gr.components.Slider(
                minimum=0, maximum=1, value=0.1, label="Temperature"
            ),
            gr.components.Slider(
                minimum=0, maximum=1, value=0.75, label="Top p"
            ),
            gr.components.Slider(
                minimum=0, maximum=100, step=1, value=40, label="Top k"
            ),
            gr.components.Slider(
                minimum=1, maximum=4, step=1, value=4, label="Beams"
            ),
            gr.components.Slider(
                minimum=1, maximum=2000, step=1, value=128, label="Max tokens"
            ),
            gr.components.Checkbox(label="Stream output"),
        ],
        outputs=[
            gr.inputs.Textbox(
                lines=5,
                label="Output",
            )
        ],
        title="πŸ¦™πŸ›οΈ LLaMA-E",
        description="LLaMA-E is a series of fine-tuned LLaMA model following the E-commerce instructions. It is developed by DSMI (http://dsmi.tech/) @ University of Technology Sydney, and trained on the 120k instruction set. This model is for academic research use only. For more details please contact: Kaize.Shi@uts.edu.au",
        # noqa: E501
    ).queue().launch(server_name="0.0.0.0", share=share_gradio)
    # Old testing code follows.

    """
    # testing code for readme
    for instruction in [
        "Tell me about alpacas.",
        "Tell me about the president of Mexico in 2019.",
        "Tell me about the king of France in 2019.",
        "List all Canadian provinces in alphabetical order.",
        "Write a Python program that prints the first 10 Fibonacci numbers.",
        "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",  # noqa: E501
        "Tell me five words that rhyme with 'shock'.",
        "Translate the sentence 'I have no mouth but I must scream' into Spanish.",
        "Count up from 1 to 500.",
    ]:
        print("Instruction:", instruction)
        print("Response:", evaluate(instruction))
        print()
    """


if __name__ == "__main__":
    fire.Fire(main)