File size: 4,555 Bytes
041e285
d0afb9d
 
954a751
 
91df19c
041e285
d0afb9d
954a751
 
 
 
73cbc9a
954a751
73cbc9a
954a751
 
 
d0afb9d
 
 
 
 
 
 
 
 
954a751
d0afb9d
 
724f6b3
 
954a751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05fe8e0
 
 
954a751
 
 
 
 
 
 
f52d254
954a751
 
 
 
05fe8e0
 
 
 
 
d0afb9d
954a751
05fe8e0
 
 
954a751
 
 
 
 
 
 
041e285
954a751
 
 
 
 
 
05fe8e0
 
954a751
 
 
 
 
 
 
 
 
 
d0afb9d
954a751
 
 
 
 
 
 
 
d0afb9d
954a751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6ac229
954a751
 
 
 
 
 
 
5904278
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import spaces
import torch
from peft import PeftModel
import transformers
import gradio as gr
import os


assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
access_token = os.environ.get('HF_TOKEN')

tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", token=access_token)

BASE_MODEL = "meta-llama/Llama-2-7b-hf"
LORA_WEIGHTS = "DSMI/LLaMA-E"

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

print("Device: " + str(device))

if device == "cuda":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        load_in_8bit=False,
        torch_dtype=torch.float16,
        device_map="auto",
    )
    model = PeftModel.from_pretrained(
        model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
    )
elif device == "mps":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
else:
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL, 
        device_map={"": device}, 
        low_cpu_mem_usage=True
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
    )

print("Model: " + str(model))

def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
                ### Instruction:
                {instruction}
                ### Input:
                {input}
                ### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
                ### Instruction:
                {instruction}
                ### Response:"""

if device != "cpu":
    model.half()
model.eval()
if torch.__version__ >= "2":
    model = torch.compile(model)

@spaces.GPU()
def evaluate(
    instruction,
    input=None,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=2,
    max_new_tokens=64,
    **kwargs,
):
    prompt = generate_prompt(instruction, input)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    return output.split("### Response:")[1].strip()


g = gr.Interface(
    fn=evaluate,
    inputs=[
        gr.components.Textbox(
            lines=2, label="Instruction", placeholder="Tell me about alpacas."
        ),
        gr.components.Textbox(lines=2, label="Input", placeholder="none"),
        gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
        gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
        gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
        gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
        gr.components.Slider(
            minimum=1, maximum=512, step=1, value=128, label="Max tokens"
        ),
    ],
    outputs=[
        gr.Textbox(
            lines=5,
            label="Output",
        )
    ],
    title="πŸ¦™πŸ›οΈ LLaMA-E",
    description="LLaMA-E is a series of fine-tuned LLaMA model following the E-commerce instructions. It is developed by DSMI (http://dsmi.tech/) @ University of Technology Sydney, and trained on the 120k instruction set. This model is for academic research use only. For more details please contact: Kaize.Shi@uts.edu.au",
)
g.queue(concurrency_count=1)
g.launch()