Spaces:
Runtime error
Runtime error
bug fix
Browse files
app.py
CHANGED
@@ -62,7 +62,7 @@ def predict(_model, _dataloader, datepicker):
|
|
62 |
def update_plot(df, preds):
|
63 |
df = pd.merge(df, preds, left_on=["time_idx", "Group"], right_on=["pred_idx", "Group"], how = "left")
|
64 |
df = df[~df["pred"].isna()]
|
65 |
-
df[["sales", "pred"]] = df[["sales", "pred"]].replace(0.0, np.nan)
|
66 |
|
67 |
axs[0, 0].plot(df.loc[df['Group'] == '4', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
68 |
axs[0, 1].plot(df.loc[df['Group'] == '7', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
@@ -71,7 +71,7 @@ def update_plot(df, preds):
|
|
71 |
return st.pyplot(fig)
|
72 |
|
73 |
@st.cache_resource
|
74 |
-
def generate_plot():
|
75 |
fig, axs = plt.subplots(2, 2, figsize=(8, 6))
|
76 |
|
77 |
# Plot scatter plots for each group
|
@@ -142,7 +142,7 @@ def main():
|
|
142 |
|
143 |
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 10, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30))
|
144 |
|
145 |
-
generate_plot()
|
146 |
|
147 |
if st.button("Forecast Sales", type="primary"):
|
148 |
dataloader = prepare_dataset(parameters, df.copy(), rain, temperature, datepicker, rain_mapping)
|
|
|
62 |
def update_plot(df, preds):
|
63 |
df = pd.merge(df, preds, left_on=["time_idx", "Group"], right_on=["pred_idx", "Group"], how = "left")
|
64 |
df = df[~df["pred"].isna()]
|
65 |
+
#df[["sales", "pred"]] = df[["sales", "pred"]].replace(0.0, np.nan)
|
66 |
|
67 |
axs[0, 0].plot(df.loc[df['Group'] == '4', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
68 |
axs[0, 1].plot(df.loc[df['Group'] == '7', 'Date'], df.loc[df['Group'] == '4', 'pred'], color = 'red')
|
|
|
71 |
return st.pyplot(fig)
|
72 |
|
73 |
@st.cache_resource
|
74 |
+
def generate_plot(df):
|
75 |
fig, axs = plt.subplots(2, 2, figsize=(8, 6))
|
76 |
|
77 |
# Plot scatter plots for each group
|
|
|
142 |
|
143 |
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 10, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30))
|
144 |
|
145 |
+
generate_plot(df)
|
146 |
|
147 |
if st.button("Forecast Sales", type="primary"):
|
148 |
dataloader = prepare_dataset(parameters, df.copy(), rain, temperature, datepicker, rain_mapping)
|