File size: 10,066 Bytes
1865436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
import torch.nn.functional as F
from torch import nn
from fvcore.nn import sigmoid_focal_loss_jit

from .util import box_ops
from .util.misc import (NestedTensor, nested_tensor_from_tensor_list,
                       accuracy, get_world_size, interpolate,
                       is_dist_avail_and_initialized)
from .util.box_ops import box_cxcywh_to_xyxy, generalized_box_iou

from scipy.optimize import linear_sum_assignment


class SetCriterion(nn.Module):
    def __init__(self, cfg, num_classes, matcher, weight_dict, eos_coef, losses):
        super().__init__()
        self.cfg = cfg
        self.num_classes = num_classes
        self.matcher = matcher
        self.weight_dict = weight_dict
        self.eos_coef = eos_coef
        self.losses = losses
        self.cfg = cfg

        self.focal_loss_alpha = cfg.MODEL.SWINTS.ALPHA
        self.focal_loss_gamma = cfg.MODEL.SWINTS.GAMMA

    def loss_labels(self, outputs, targets, indices, num_boxes, mask_encoding):
        assert 'pred_logits' in outputs
        src_logits = outputs['pred_logits']

        idx = self._get_src_permutation_idx(indices)
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(src_logits.shape[:2], self.num_classes,
                                    dtype=torch.int64, device=src_logits.device)
        target_classes[idx] = target_classes_o

        src_logits = src_logits.flatten(0, 1)

        target_classes = target_classes.flatten(0, 1)
        pos_inds = torch.nonzero(target_classes != self.num_classes, as_tuple=True)[0]
        labels = torch.zeros_like(src_logits)
        labels[pos_inds, target_classes[pos_inds]] = 1

        class_loss = sigmoid_focal_loss_jit(
            src_logits,
            labels,
            alpha=self.focal_loss_alpha,
            gamma=self.focal_loss_gamma,
            reduction="sum",
        ) / num_boxes
        losses = {'loss_ce': class_loss}

        return losses


    def loss_boxes(self, outputs, targets, indices, num_boxes, mask_encoding):
        assert 'pred_boxes' in outputs
        idx = self._get_src_permutation_idx(indices)
        src_boxes = outputs['pred_boxes'][idx]
        target_boxes = torch.cat([t['boxes_xyxy'][i] for t, (_, i) in zip(targets, indices)], dim=0)

        losses = {}
        loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(src_boxes, target_boxes))
        losses['loss_giou'] = loss_giou.sum() / num_boxes

        image_size = torch.cat([v["image_size_xyxy_tgt"] for v in targets])
        src_boxes_ = src_boxes / image_size
        target_boxes_ = target_boxes / image_size

        loss_bbox = F.l1_loss(src_boxes_, target_boxes_, reduction='none')
        losses['loss_bbox'] = loss_bbox.sum() / num_boxes

        return losses

    def loss_masks(self, outputs, targets, indices, num_boxes, mask_encoding):
        assert 'pred_masks' in outputs
        idx = self._get_src_permutation_idx(indices)
        src_masks_feat = outputs['pred_masks'][idx]
        target_masks = torch.cat([t['gt_masks'][i] for t, (_, i) in zip(targets, indices)], dim=0)
        mask_loss_func = nn.MSELoss(reduction="none")

        target_masks_feat = mask_encoding.encoder(target_masks.flatten(1))
        loss = mask_loss_func(src_masks_feat, target_masks_feat)
        
        losses = {}
        losses['loss_feat'] =  loss.sum() / num_boxes / self.cfg.MODEL.SWINTS.MASK_DIM

        eps = 1e-5
        src_masks = mask_encoding.decoder(src_masks_feat.flatten(1))
        n_inst = src_masks.size(0)
        target_masks = target_masks.flatten(1)
        intersection = (src_masks * target_masks).sum(dim=1)
        union = (src_masks ** 2.0).sum(dim=1) + (target_masks ** 2.0).sum(dim=1) + eps
        loss = 1. - (2 * intersection / union)
        losses['loss_dice'] = loss.sum() / num_boxes

        return losses
    def loss_rec(self, outputs, targets, indices, num_boxes, mask_encoding):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        """
        src_rec = outputs['pred_rec']
        losses = {}
        losses['loss_rec'] = src_rec
        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, indices, num_boxes, mask_encoding, **kwargs):
        loss_map = {
            'labels': self.loss_labels,
            'boxes': self.loss_boxes,
            'masks': self.loss_masks,
            'rec': self.loss_rec
        }
        assert loss in loss_map, f'do you really want to compute {loss} loss?'
        return loss_map[loss](outputs, targets, indices, num_boxes, mask_encoding, **kwargs)

    def forward(self, outputs, targets, mask_encoding):
        outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'}

        # Retrieve the matching between the outputs of the last layer and the targets
        indices = self.matcher(outputs_without_aux, targets, mask_encoding)

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_boxes = sum(len(t["labels"]) for t in targets)
        num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_boxes)
        num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes, mask_encoding))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if 'aux_outputs' in outputs:
            for i, aux_outputs in enumerate(outputs['aux_outputs']):
                indices = self.matcher(aux_outputs, targets, mask_encoding)
                for loss in self.losses:
                    # if loss == 'masks':
                    #     # Intermediate masks losses are too costly to compute, we ignore them.
                    #     continue
                    if loss == 'rec':
                        continue
                    kwargs = {}
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, mask_encoding, **kwargs)
                    l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses



class HungarianMatcher(nn.Module):
    def __init__(self, cfg, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1, cost_mask: float = 1):
        super().__init__()
        self.cost_class = cost_class
        self.cost_bbox = cost_bbox
        self.cost_giou = cost_giou
        self.cost_mask = cost_mask
        self.focal_loss_alpha = cfg.MODEL.SWINTS.ALPHA
        self.focal_loss_gamma = cfg.MODEL.SWINTS.GAMMA
        assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0"

    @torch.no_grad()
    def forward(self, outputs, targets, mask_encoding):
        bs, num_queries = outputs["pred_logits"].shape[:2]

        out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid()  # [batch_size * num_queries, num_classes]
        out_bbox = outputs["pred_boxes"].flatten(0, 1)  # [batch_size * num_queries, 4]

        # Also concat the target labels and boxes
        tgt_ids = torch.cat([v["labels"] for v in targets])
        tgt_bbox = torch.cat([v["boxes_xyxy"] for v in targets])

        
        alpha = self.focal_loss_alpha
        gamma = self.focal_loss_gamma
        neg_cost_class = (1 - alpha) * (out_prob ** gamma) * (-(1 - out_prob + 1e-8).log())
        pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log())
        cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids]

        # Compute the L1 cost between boxes
        image_size_out = torch.cat([v["image_size_xyxy"].unsqueeze(0) for v in targets])
        image_size_out = image_size_out.unsqueeze(1).repeat(1, num_queries, 1).flatten(0, 1)
        image_size_tgt = torch.cat([v["image_size_xyxy_tgt"] for v in targets])

        out_bbox_ = out_bbox / image_size_out
        tgt_bbox_ = tgt_bbox / image_size_tgt
        cost_bbox = torch.cdist(out_bbox_, tgt_bbox_, p=1)

        # Compute the giou cost betwen boxes
        # cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox))
        cost_giou = -generalized_box_iou(out_bbox, tgt_bbox)

        # mask loss
        tgt_mask = torch.cat([v["gt_masks"] for v in targets]).flatten(1)
        tgt_mask_feat = mask_encoding.encoder(tgt_mask)
        out_mask_feat = outputs["pred_masks"].flatten(0, 1).flatten(1)

        tgt_mask_feat = nn.functional.normalize(tgt_mask_feat, p=2)
        out_mask_feat = nn.functional.normalize(out_mask_feat, p=2)
        
        # cost_mask = -torch.mm(out_mask, tgt_mask.T)
        cost_mask = -(torch.mm(out_mask_feat, tgt_mask_feat.T) + 1.0) / 2.0

        # Final cost matrix
        C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou + self.cost_mask * cost_mask
        C = C.view(bs, num_queries, -1).cpu()

        sizes = [len(v["boxes"]) for v in targets]
        indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))]
        return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]