File size: 4,790 Bytes
04c9edc
 
 
 
 
 
77c7cf9
04c9edc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c30c71
04c9edc
77c7cf9
 
 
 
04c9edc
77c7cf9
 
 
 
04c9edc
 
 
77c7cf9
 
5d07c9b
77c7cf9
 
8c30c71
77c7cf9
04c9edc
8c30c71
 
04c9edc
 
 
8c30c71
04c9edc
 
 
 
77c7cf9
 
 
8c30c71
04c9edc
 
77c7cf9
8c30c71
77c7cf9
 
 
04c9edc
 
77c7cf9
 
04c9edc
 
 
77c7cf9
04c9edc
 
 
 
 
77c7cf9
 
04c9edc
 
 
77c7cf9
 
 
 
 
 
 
 
04c9edc
 
 
 
 
 
77c7cf9
04c9edc
 
 
77c7cf9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import spaces
import gradio as gr
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from threading import Thread
import torch
from torch.nn.attention import SDPBackend, sdpa_kernel

HF_TOKEN = os.getenv("HF_TOKEN", None)
#REPO_ID = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
REPO_ID = "nicoboss/DeepSeek-R1-Distill-Qwen-32B-Uncensored"

DESCRIPTION = f'''

<div>

<h1 style="text-align: center;">{REPO_ID}</h1>

</div>

'''

PLACEHOLDER = f"""

<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">

   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">{REPO_ID}</h1>

   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>

</div>

"""

css = """

h1 {

  text-align: center;

  display: block;

}



#duplicate-button {

  margin: auto;

  color: white;

  background: #1565c0;

  border-radius: 100vh;

}

"""

tokenizer = AutoTokenizer.from_pretrained(REPO_ID)
if torch.cuda.is_available():
    nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
    model = AutoModelForCausalLM.from_pretrained(REPO_ID, quantization_config=nf4_config)
else: model = AutoModelForCausalLM.from_pretrained(REPO_ID, torch_dtype=torch.float32)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

@spaces.GPU(duration=30)
def chat(message: str,

         history: list[dict],

         temperature: float,

         max_new_tokens: int,

         top_p: float,

         top_k: int,

         repetition_penalty: float,

         sys_prompt: str,

         progress=gr.Progress(track_tqdm=True)

        ):
    try:
        messages = []
        response = []
        if not history: history = []
        messages.append({"role": "system", "content": sys_prompt})
        messages.append({"role": "user", "content": message})

        input_tensors = tokenizer.apply_chat_template(history + messages, add_generation_prompt=True, return_dict=True, return_tensors="pt").to(model.device)

        input_ids = input_tensors["input_ids"]
        attention_mask = input_tensors["attention_mask"]

        generate_kwargs = dict(
            input_ids=input_ids,
            attention_mask=attention_mask,
            streamer=streamer,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
            pad_token_id=tokenizer.eos_token_id,
        )
        if temperature == 0: generate_kwargs['do_sample'] = False
        response.append({"role": "assistant", "content": ""})

        with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
            t = Thread(target=model.generate, kwargs=generate_kwargs)
            t.start()

        for text in streamer:
            response[-1]["content"] += text
            yield response
    except Exception as e:
        print(e)
        gr.Warning(f"Error: {e}")
        yield response

with gr.Blocks(fill_height=True, fill_width=True, css=css) as demo:
    gr.Markdown(DESCRIPTION)
    gr.ChatInterface(
        fn=chat,
        type="messages",
        chatbot=gr.Chatbot(height=450, type="messages", placeholder=PLACEHOLDER, label='Gradio ChatInterface'),
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label="Temperature", render=False),
            gr.Slider(minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False),
            gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p", render=False),
            gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k", render=False),
            gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty", render=False),
            gr.Textbox(value="", label="System prompt", render=False),
        ],
        save_history=True,
        examples=[
            ['How to setup a human base on Mars? Give short answer.'],
            ['Explain theory of relativity to me like I’m 8 years old.'],
            ['What is 9,000 * 9,000?'],
            ['Write a pun-filled happy birthday message to my friend Alex.'],
            ['Justify why a penguin might make a good king of the jungle.']
        ],
        cache_examples=False)

if __name__ == "__main__":
    demo.queue().launch(ssr_mode=False)