Spaces:
Running
Running
import gradio as gr | |
import torch | |
import transformers | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from utils.prompter import Prompter | |
class CustomPrompter(Prompter): | |
def get_response(self, output: str) -> str: | |
# Safely split on '### Response:' | |
split_output = output.split(self.template["response_split"], maxsplit=1) | |
if len(split_output) < 2: | |
return output.strip() | |
response_part = split_output[1].strip() | |
# Optionally strip out any subsequent '### Instruction:' | |
end_index = response_part.find("### Instruction:") | |
if end_index != -1: | |
response_part = response_part[:end_index].strip() | |
return response_part | |
prompt_template_name = "alpaca" | |
prompter = CustomPrompter(prompt_template_name) | |
def tokenize(prompt, add_eos_token=True): | |
result = tokenizer( | |
prompt, | |
truncation=True, | |
max_length=cutoff_len, | |
padding=False, | |
return_tensors=None, | |
) | |
if ( | |
result["input_ids"][-1] != tokenizer.eos_token_id | |
and len(result["input_ids"]) < cutoff_len | |
and add_eos_token | |
): | |
result["input_ids"].append(tokenizer.eos_token_id) | |
result["attention_mask"].append(1) | |
result["labels"] = result["input_ids"].copy() | |
return result | |
def generate_and_tokenize_prompt(data_point): | |
full_prompt = prompter.generate_prompt( | |
data_point["instruction"], | |
data_point["input"], | |
data_point["output"], | |
) | |
tokenized_full_prompt = tokenize(full_prompt) | |
if not train_on_inputs: | |
user_prompt = prompter.generate_prompt( | |
data_point["instruction"], data_point["input"] | |
) | |
tokenized_user_prompt = tokenize( | |
user_prompt, add_eos_token=add_eos_token | |
) | |
user_prompt_len = len(tokenized_user_prompt["input_ids"]) | |
if add_eos_token: | |
user_prompt_len -= 1 | |
tokenized_full_prompt["labels"] = [ | |
-100 | |
] * user_prompt_len + tokenized_full_prompt["labels"][ | |
user_prompt_len: | |
] # could be sped up, probably | |
return tokenized_full_prompt | |
def evaluate(instruction): | |
input = None | |
prompt = prompter.generate_prompt(instruction, input) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
# Example generation config | |
temperature=0.2 | |
top_p=0.95 | |
top_k=25 | |
num_beams=1 | |
max_new_tokens=256 | |
repetition_penalty = 2.0 | |
do_sample = True | |
generation_config = transformers.GenerationConfig( | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
num_beams=num_beams, | |
repetition_penalty=repetition_penalty, | |
do_sample=do_sample, | |
min_new_tokens=32, | |
num_return_sequences=1, | |
pad_token_id=0, | |
# Optionally define a stopping criterion to stop at '### Instruction:' | |
# stopping_criteria=StoppingCriteriaList([StopOnTokens(tokenizer.encode("### Instruction:", add_special_tokens=False))]), | |
) | |
with torch.no_grad(): | |
generation_output = model.generate( | |
input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True, | |
max_new_tokens=max_new_tokens, | |
) | |
# For demo, just take the first sequence | |
output = tokenizer.decode(generation_output.sequences[0], skip_special_tokens=True) | |
return prompter.get_response(output) | |
interface = gr.Interface( | |
fn=evaluate, | |
inputs=[ | |
gr.components.Textbox( | |
lines=2, | |
label="Instruction", | |
placeholder="Explain economic growth.", | |
), | |
], | |
outputs=[ | |
gr.components.Textbox( | |
lines=5, | |
label="Output", | |
) | |
], | |
title="🌲 ELM - Erasmian Language Model", | |
description=( | |
"ELM is a 900M parameter language model finetuned to follow instruction. " | |
"It is trained on Erasmus University academic outputs and the " | |
"[Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset. " | |
"For more information, please visit [the GitHub repository](https://github.com/Joaoffg/ELM)." | |
), | |
) | |
interface.queue().launch() |