""" Enhanced Excel Processing Tool for GAIA Agent - Phase 4 Advanced Excel file reading, processing, and data analysis capabilities Features: - Multi-sheet Excel processing with openpyxl and pandas - Formula evaluation and calculation - Data type detection and conversion - Cell range analysis and aggregation - Conditional data filtering and grouping - Financial calculations with currency formatting """ import os import logging import pandas as pd import numpy as np from typing import Dict, Any, List, Optional, Union, Tuple from pathlib import Path import re from decimal import Decimal, ROUND_HALF_UP try: import openpyxl from openpyxl import load_workbook from openpyxl.utils import get_column_letter, column_index_from_string OPENPYXL_AVAILABLE = True except ImportError: OPENPYXL_AVAILABLE = False try: import xlrd XLRD_AVAILABLE = True except ImportError: XLRD_AVAILABLE = False logger = logging.getLogger(__name__) class ExcelProcessor: """Enhanced Excel processor for GAIA data analysis tasks.""" def __init__(self): """Initialize the Excel processor.""" self.available = OPENPYXL_AVAILABLE self.workbook = None self.sheets_data = {} self.sheet_names = [] if not self.available: logger.warning("⚠️ openpyxl not available - Excel processing limited") def load_excel_file(self, file_path: str) -> Dict[str, Any]: """ Load Excel file and return comprehensive data structure. Args: file_path: Path to Excel file Returns: Dictionary containing sheets data and metadata """ try: file_path = Path(file_path) if not file_path.exists(): raise FileNotFoundError(f"Excel file not found: {file_path}") # Determine file type and load accordingly if file_path.suffix.lower() == '.csv': return self._load_csv_file(file_path) elif file_path.suffix.lower() in ['.xlsx', '.xlsm']: return self._load_xlsx_file(file_path) elif file_path.suffix.lower() == '.xls' and XLRD_AVAILABLE: return self._load_xls_file(file_path) else: # Try pandas as fallback return self._load_with_pandas(file_path) except Exception as e: logger.error(f"❌ Failed to load Excel file {file_path}: {e}") return {"error": str(e), "sheets": {}, "metadata": {}} def _load_xlsx_file(self, file_path: Path) -> Dict[str, Any]: """Load .xlsx file using openpyxl for advanced features.""" if not OPENPYXL_AVAILABLE: return self._load_with_pandas(file_path) try: # Load workbook with openpyxl for formula access self.workbook = load_workbook(file_path, data_only=False) workbook_data_only = load_workbook(file_path, data_only=True) sheets_data = {} metadata = { "file_path": str(file_path), "file_size": file_path.stat().st_size, "sheet_count": len(self.workbook.sheetnames), "sheet_names": self.workbook.sheetnames } for sheet_name in self.workbook.sheetnames: sheet_data = self._process_worksheet( self.workbook[sheet_name], workbook_data_only[sheet_name], sheet_name ) sheets_data[sheet_name] = sheet_data self.sheets_data = sheets_data self.sheet_names = self.workbook.sheetnames return { "sheets": sheets_data, "metadata": metadata, "success": True } except Exception as e: logger.error(f"❌ Failed to load XLSX file: {e}") return {"error": str(e), "sheets": {}, "metadata": {}} def _load_xls_file(self, file_path: Path) -> Dict[str, Any]: """Load .xls file using xlrd.""" try: # Use pandas for .xls files return self._load_with_pandas(file_path) except Exception as e: logger.error(f"❌ Failed to load XLS file: {e}") return {"error": str(e), "sheets": {}, "metadata": {}} def _load_csv_file(self, file_path: Path) -> Dict[str, Any]: """Load CSV file as single sheet.""" try: df = pd.read_csv(file_path) # Process the dataframe processed_data = self._process_dataframe(df, "Sheet1") metadata = { "file_path": str(file_path), "file_size": file_path.stat().st_size, "sheet_count": 1, "sheet_names": ["Sheet1"] } return { "sheets": {"Sheet1": processed_data}, "metadata": metadata, "success": True } except Exception as e: logger.error(f"❌ Failed to load CSV file: {e}") return {"error": str(e), "sheets": {}, "metadata": {}} def _load_with_pandas(self, file_path: Path) -> Dict[str, Any]: """Load Excel file using pandas as fallback.""" try: # Read all sheets if file_path.suffix.lower() == '.csv': sheets_dict = {"Sheet1": pd.read_csv(file_path)} else: sheets_dict = pd.read_excel(file_path, sheet_name=None) sheets_data = {} for sheet_name, df in sheets_dict.items(): sheets_data[sheet_name] = self._process_dataframe(df, sheet_name) metadata = { "file_path": str(file_path), "file_size": file_path.stat().st_size, "sheet_count": len(sheets_dict), "sheet_names": list(sheets_dict.keys()) } return { "sheets": sheets_data, "metadata": metadata, "success": True } except Exception as e: logger.error(f"❌ Failed to load with pandas: {e}") return {"error": str(e), "sheets": {}, "metadata": {}} def _process_worksheet(self, worksheet, worksheet_data_only, sheet_name: str) -> Dict[str, Any]: """Process individual worksheet with openpyxl.""" try: # Get dimensions max_row = worksheet.max_row max_col = worksheet.max_column # Extract data with formulas and values data_with_formulas = [] data_values_only = [] for row in range(1, max_row + 1): row_formulas = [] row_values = [] for col in range(1, max_col + 1): # Get cell with formula cell_formula = worksheet.cell(row=row, column=col) # Get cell with calculated value cell_value = worksheet_data_only.cell(row=row, column=col) row_formulas.append({ 'value': cell_formula.value, 'formula': cell_formula.value if isinstance(cell_formula.value, str) and cell_formula.value.startswith('=') else None, 'data_type': str(type(cell_formula.value).__name__) }) row_values.append(cell_value.value) data_with_formulas.append(row_formulas) data_values_only.append(row_values) # Convert to DataFrame for easier analysis df = pd.DataFrame(data_values_only) # Process the dataframe processed_data = self._process_dataframe(df, sheet_name) # Add formula information processed_data['formulas'] = data_with_formulas processed_data['dimensions'] = {'rows': max_row, 'columns': max_col} return processed_data except Exception as e: logger.error(f"❌ Failed to process worksheet {sheet_name}: {e}") return {"error": str(e), "data": [], "columns": []} def _process_dataframe(self, df: pd.DataFrame, sheet_name: str) -> Dict[str, Any]: """Process pandas DataFrame and extract metadata.""" try: # Clean the dataframe df_clean = df.copy() # Detect header row header_row = self._detect_header_row(df_clean) if header_row > 0: # Set proper headers df_clean.columns = df_clean.iloc[header_row] df_clean = df_clean.iloc[header_row + 1:].reset_index(drop=True) # Clean column names df_clean.columns = [str(col).strip() if pd.notna(col) else f"Column_{i}" for i, col in enumerate(df_clean.columns)] # Detect and convert data types df_clean = self._detect_and_convert_types(df_clean) # Generate summary statistics summary_stats = self._generate_summary_stats(df_clean) # Detect categories (for food vs drinks analysis) categories = self._detect_categories(df_clean) return { "data": df_clean.to_dict('records'), "dataframe": df_clean, "columns": list(df_clean.columns), "shape": df_clean.shape, "dtypes": df_clean.dtypes.to_dict(), "summary_stats": summary_stats, "categories": categories, "header_row": header_row, "sheet_name": sheet_name } except Exception as e: logger.error(f"❌ Failed to process dataframe for {sheet_name}: {e}") return {"error": str(e), "data": [], "columns": []} def _detect_header_row(self, df: pd.DataFrame) -> int: """Detect which row contains the headers.""" for i in range(min(5, len(df))): # Check first 5 rows row = df.iloc[i] # Check if row has mostly string values (likely headers) string_count = sum(1 for val in row if isinstance(val, str) and val.strip()) if string_count > len(row) * 0.6: # 60% strings return i return 0 def _detect_and_convert_types(self, df: pd.DataFrame) -> pd.DataFrame: """Detect and convert appropriate data types.""" df_converted = df.copy() for col in df_converted.columns: # Try to convert to numeric try: # Remove currency symbols and commas if df_converted[col].dtype == 'object': cleaned_series = df_converted[col].astype(str).str.replace(r'[$,€£¥]', '', regex=True) cleaned_series = cleaned_series.str.replace(r'[^\d.-]', '', regex=True) # Try to convert to numeric numeric_series = pd.to_numeric(cleaned_series, errors='coerce') # If most values are numeric, use numeric type if numeric_series.notna().sum() > len(numeric_series) * 0.7: df_converted[col] = numeric_series except Exception: pass # Keep original type return df_converted def _generate_summary_stats(self, df: pd.DataFrame) -> Dict[str, Any]: """Generate summary statistics for the dataframe.""" try: stats = { "row_count": len(df), "column_count": len(df.columns), "numeric_columns": [], "text_columns": [], "missing_values": df.isnull().sum().to_dict() } for col in df.columns: if pd.api.types.is_numeric_dtype(df[col]): stats["numeric_columns"].append({ "name": col, "min": float(df[col].min()) if pd.notna(df[col].min()) else None, "max": float(df[col].max()) if pd.notna(df[col].max()) else None, "mean": float(df[col].mean()) if pd.notna(df[col].mean()) else None, "sum": float(df[col].sum()) if pd.notna(df[col].sum()) else None }) else: stats["text_columns"].append({ "name": col, "unique_values": int(df[col].nunique()), "most_common": str(df[col].mode().iloc[0]) if len(df[col].mode()) > 0 else None }) return stats except Exception as e: logger.error(f"❌ Failed to generate summary stats: {e}") return {} def _detect_categories(self, df: pd.DataFrame) -> Dict[str, List[str]]: """Detect potential categories in the data (e.g., food vs drinks).""" categories = {} try: # Look for columns that might contain categories for col in df.columns: if df[col].dtype == 'object': unique_values = df[col].dropna().unique() # Check for food/drink related categories food_keywords = ['food', 'burger', 'sandwich', 'pizza', 'salad', 'fries', 'chicken', 'beef'] drink_keywords = ['drink', 'soda', 'coffee', 'tea', 'juice', 'water', 'beer', 'wine'] food_items = [] drink_items = [] for value in unique_values: value_str = str(value).lower() if any(keyword in value_str for keyword in food_keywords): food_items.append(str(value)) elif any(keyword in value_str for keyword in drink_keywords): drink_items.append(str(value)) if food_items or drink_items: categories[col] = { "food": food_items, "drinks": drink_items, "other": [str(v) for v in unique_values if str(v) not in food_items + drink_items] } return categories except Exception as e: logger.error(f"❌ Failed to detect categories: {e}") return {} def analyze_sales_data(self, category_filter: str = None, exclude_categories: List[str] = None) -> Dict[str, Any]: """ Analyze sales data with category filtering. Args: category_filter: Category to include (e.g., 'food') exclude_categories: Categories to exclude (e.g., ['drinks']) Returns: Analysis results with totals and breakdowns """ try: if not self.sheets_data: return {"error": "No data loaded"} results = {} total_sales = 0 for sheet_name, sheet_data in self.sheets_data.items(): if "error" in sheet_data: continue df = sheet_data.get("dataframe") if df is None or df.empty: continue # Find sales/amount columns sales_columns = self._find_sales_columns(df) category_columns = self._find_category_columns(df) sheet_total = 0 filtered_data = df.copy() # Apply category filtering if category_filter or exclude_categories: filtered_data = self._apply_category_filter( df, category_columns, category_filter, exclude_categories ) # Calculate totals for each sales column for sales_col in sales_columns: if sales_col in filtered_data.columns: col_total = filtered_data[sales_col].sum() if pd.notna(col_total): sheet_total += col_total results[sheet_name] = { "total": sheet_total, "sales_columns": sales_columns, "category_columns": category_columns, "filtered_rows": len(filtered_data), "original_rows": len(df) } total_sales += sheet_total # Format final result formatted_total = self._format_currency(total_sales) return { "total_sales": total_sales, "formatted_total": formatted_total, "sheet_results": results, "success": True } except Exception as e: logger.error(f"❌ Failed to analyze sales data: {e}") return {"error": str(e)} def _find_sales_columns(self, df: pd.DataFrame) -> List[str]: """Find columns that likely contain sales/amount data.""" sales_keywords = ['sales', 'amount', 'total', 'price', 'cost', 'revenue', 'value'] sales_columns = [] for col in df.columns: col_lower = str(col).lower() if any(keyword in col_lower for keyword in sales_keywords): # Check if column contains numeric data if pd.api.types.is_numeric_dtype(df[col]): sales_columns.append(col) # If no obvious sales columns, look for numeric columns with currency-like values if not sales_columns: for col in df.columns: if pd.api.types.is_numeric_dtype(df[col]): # Check if values look like currency (positive numbers, reasonable range) values = df[col].dropna() if len(values) > 0 and values.min() >= 0 and values.max() < 1000000: sales_columns.append(col) return sales_columns def _find_category_columns(self, df: pd.DataFrame) -> List[str]: """Find columns that likely contain category data.""" category_keywords = ['category', 'type', 'item', 'product', 'name', 'description'] category_columns = [] for col in df.columns: col_lower = str(col).lower() if any(keyword in col_lower for keyword in category_keywords): if df[col].dtype == 'object': # Text column category_columns.append(col) return category_columns def _apply_category_filter(self, df: pd.DataFrame, category_columns: List[str], include_category: str = None, exclude_categories: List[str] = None) -> pd.DataFrame: """Apply category filtering to dataframe.""" filtered_df = df.copy() try: for col in category_columns: if col not in df.columns: continue mask = pd.Series([True] * len(df)) # Apply include filter if include_category: include_mask = df[col].astype(str).str.lower().str.contains( include_category.lower(), na=False ) mask = mask & include_mask # Apply exclude filter if exclude_categories: for exclude_cat in exclude_categories: exclude_mask = ~df[col].astype(str).str.lower().str.contains( exclude_cat.lower(), na=False ) mask = mask & exclude_mask filtered_df = filtered_df[mask] return filtered_df except Exception as e: logger.error(f"❌ Failed to apply category filter: {e}") return df def _format_currency(self, amount: float, currency: str = "USD", decimal_places: int = 2) -> str: """Format amount as currency with specified decimal places.""" try: # Round to specified decimal places rounded_amount = Decimal(str(amount)).quantize( Decimal('0.' + '0' * decimal_places), rounding=ROUND_HALF_UP ) if currency.upper() == "USD": return f"${rounded_amount:.{decimal_places}f}" else: return f"{rounded_amount:.{decimal_places}f} {currency}" except Exception as e: logger.error(f"❌ Failed to format currency: {e}") return f"{amount:.{decimal_places}f}" def get_sheet_summary(self) -> Dict[str, Any]: """Get summary of all loaded sheets.""" if not self.sheets_data: return {"error": "No data loaded"} summary = { "total_sheets": len(self.sheets_data), "sheet_names": list(self.sheets_data.keys()), "sheets": {} } for sheet_name, sheet_data in self.sheets_data.items(): if "error" not in sheet_data: summary["sheets"][sheet_name] = { "rows": sheet_data.get("shape", [0, 0])[0], "columns": sheet_data.get("shape", [0, 0])[1], "column_names": sheet_data.get("columns", []), "has_numeric_data": len(sheet_data.get("summary_stats", {}).get("numeric_columns", [])) > 0 } return summary def get_excel_processor_tools() -> List[Any]: """Get Excel processor tools for AGNO integration.""" from .base_tool import BaseTool class ExcelProcessorTool(BaseTool): """Excel processing tool for GAIA agent.""" def __init__(self): super().__init__( name="excel_processor", description="Process and analyze Excel files for data analysis tasks" ) self.processor = ExcelProcessor() def execute(self, file_path: str, analysis_type: str = "sales", category_filter: str = None, exclude_categories: List[str] = None) -> Dict[str, Any]: """Execute Excel processing and analysis.""" try: # Load the Excel file result = self.processor.load_excel_file(file_path) if not result.get("success"): return {"error": f"Failed to load Excel file: {result.get('error', 'Unknown error')}"} # Perform analysis based on type if analysis_type == "sales": analysis_result = self.processor.analyze_sales_data( category_filter=category_filter, exclude_categories=exclude_categories ) return analysis_result elif analysis_type == "summary": return self.processor.get_sheet_summary() else: return {"error": f"Unknown analysis type: {analysis_type}"} except Exception as e: return {"error": f"Excel processing failed: {str(e)}"} return [ExcelProcessorTool()]