gaia-enhanced-agent / tools /video_content_analyzer.py
GAIA Agent Deployment
Deploy Complete Enhanced GAIA Agent with Phase 1-6 Improvements
9a6a4dc
"""
Video Content Analyzer for GAIA Agent - Phase 5
Provides comprehensive video content analysis including scene segmentation, temporal patterns, and content summarization.
Features:
- Scene segmentation and analysis
- Temporal pattern recognition
- Object interaction analysis
- Content summarization and reporting
- Key frame identification and extraction
- Video metadata analysis
"""
import os
import logging
import cv2
import numpy as np
from typing import Dict, Any, List, Optional, Tuple
import json
from datetime import datetime, timedelta
from pathlib import Path
import tempfile
# Configure logging
logger = logging.getLogger(__name__)
class VideoContentAnalyzer:
"""Advanced video content analyzer for scene understanding and temporal analysis."""
def __init__(self):
"""Initialize the video content analyzer."""
self.available = True
self.temp_dir = tempfile.mkdtemp()
# Analysis parameters
self.scene_change_threshold = 0.3
self.keyframe_interval = 30 # Extract keyframe every 30 frames
self.min_scene_duration = 2.0 # Minimum scene duration in seconds
self.max_scenes = 50 # Maximum number of scenes to analyze
# Initialize analysis components
self._init_scene_analyzer()
self._init_temporal_analyzer()
logger.info(f"πŸ“Ή Video Content Analyzer initialized - Available: {self.available}")
def _init_scene_analyzer(self):
"""Initialize scene analysis components."""
try:
# Scene change detection parameters
self.scene_detector_params = {
'histogram_bins': 32,
'color_spaces': ['HSV', 'RGB'],
'comparison_methods': [cv2.HISTCMP_CORREL, cv2.HISTCMP_CHISQR],
'motion_threshold': 0.1
}
logger.info("βœ… Scene analyzer initialized")
except Exception as e:
logger.warning(f"⚠️ Scene analyzer initialization failed: {e}")
def _init_temporal_analyzer(self):
"""Initialize temporal analysis components."""
try:
# Temporal pattern analysis parameters
self.temporal_params = {
'pattern_window': 10, # Analyze patterns over 10 frame windows
'smoothing_factor': 0.3,
'trend_threshold': 0.1,
'periodicity_detection': True
}
logger.info("βœ… Temporal analyzer initialized")
except Exception as e:
logger.warning(f"⚠️ Temporal analyzer initialization failed: {e}")
def analyze_video_content(self, video_path: str,
object_detections: List[List[Dict[str, Any]]] = None,
question: str = None) -> Dict[str, Any]:
"""
Perform comprehensive video content analysis.
Args:
video_path: Path to video file
object_detections: Optional pre-computed object detections per frame
question: Optional question to guide analysis
Returns:
Comprehensive content analysis results
"""
try:
logger.info(f"πŸ“Ή Starting video content analysis for: {video_path}")
# Extract video metadata
metadata = self._extract_video_metadata(video_path)
# Perform scene segmentation
scenes = self._segment_scenes(video_path)
# Extract key frames
keyframes = self._extract_keyframes(video_path, scenes)
# Analyze temporal patterns
temporal_analysis = self._analyze_temporal_patterns(
video_path, object_detections, scenes
)
# Perform content summarization
content_summary = self._summarize_content(
scenes, keyframes, temporal_analysis, object_detections
)
# Generate interaction analysis
interaction_analysis = self._analyze_object_interactions(
object_detections, scenes
)
# Create comprehensive report
analysis_report = self._create_content_report(
metadata, scenes, keyframes, temporal_analysis,
content_summary, interaction_analysis, question
)
return analysis_report
except Exception as e:
logger.error(f"❌ Video content analysis failed: {e}")
return {
'success': False,
'error': f'Content analysis failed: {str(e)}'
}
def _extract_video_metadata(self, video_path: str) -> Dict[str, Any]:
"""Extract comprehensive video metadata."""
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise Exception("Failed to open video file")
# Basic properties
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
duration = frame_count / fps if fps > 0 else 0
# Additional properties
fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))
codec = "".join([chr((fourcc >> 8 * i) & 0xFF) for i in range(4)])
cap.release()
metadata = {
'filename': os.path.basename(video_path),
'duration_seconds': duration,
'fps': fps,
'frame_count': frame_count,
'resolution': {'width': width, 'height': height},
'aspect_ratio': width / height if height > 0 else 1.0,
'codec': codec,
'file_size': os.path.getsize(video_path) if os.path.exists(video_path) else 0,
'analysis_timestamp': datetime.now().isoformat()
}
logger.info(f"πŸ“Š Video metadata extracted: {duration:.1f}s, {width}x{height}, {fps:.1f} FPS")
return metadata
except Exception as e:
logger.error(f"❌ Failed to extract video metadata: {e}")
return {}
def _segment_scenes(self, video_path: str) -> List[Dict[str, Any]]:
"""Segment video into distinct scenes based on visual changes."""
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise Exception("Failed to open video file")
scenes = []
prev_hist = None
scene_start = 0
frame_count = 0
fps = cap.get(cv2.CAP_PROP_FPS)
scene_id = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Calculate histogram for scene change detection
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([hsv], [0, 1, 2], None,
[self.scene_detector_params['histogram_bins']] * 3,
[0, 180, 0, 256, 0, 256])
# Detect scene change
if prev_hist is not None:
correlation = cv2.compareHist(hist, prev_hist, cv2.HISTCMP_CORREL)
if correlation < self.scene_change_threshold:
# Scene change detected
scene_end = frame_count
scene_duration = (scene_end - scene_start) / fps
if scene_duration >= self.min_scene_duration:
scene = {
'id': scene_id,
'start_frame': scene_start,
'end_frame': scene_end,
'start_time': scene_start / fps,
'end_time': scene_end / fps,
'duration': scene_duration,
'frame_count': scene_end - scene_start
}
scenes.append(scene)
scene_id += 1
if len(scenes) >= self.max_scenes:
break
scene_start = frame_count
prev_hist = hist
frame_count += 1
# Add final scene
if scene_start < frame_count:
scene_duration = (frame_count - scene_start) / fps
if scene_duration >= self.min_scene_duration:
scene = {
'id': scene_id,
'start_frame': scene_start,
'end_frame': frame_count,
'start_time': scene_start / fps,
'end_time': frame_count / fps,
'duration': scene_duration,
'frame_count': frame_count - scene_start
}
scenes.append(scene)
cap.release()
logger.info(f"🎬 Scene segmentation complete: {len(scenes)} scenes detected")
return scenes
except Exception as e:
logger.error(f"❌ Scene segmentation failed: {e}")
return []
def _extract_keyframes(self, video_path: str, scenes: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Extract representative keyframes from video scenes."""
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise Exception("Failed to open video file")
keyframes = []
fps = cap.get(cv2.CAP_PROP_FPS)
for scene in scenes:
# Extract keyframes from each scene
scene_keyframes = []
# Extract keyframe from middle of scene
mid_frame = (scene['start_frame'] + scene['end_frame']) // 2
cap.set(cv2.CAP_PROP_POS_FRAMES, mid_frame)
ret, frame = cap.read()
if ret:
keyframe = {
'scene_id': scene['id'],
'frame_number': mid_frame,
'timestamp': mid_frame / fps,
'type': 'scene_representative',
'frame_data': frame,
'visual_features': self._extract_visual_features(frame)
}
scene_keyframes.append(keyframe)
# Extract additional keyframes for longer scenes
if scene['duration'] > 10: # For scenes longer than 10 seconds
# Extract keyframes at 1/4 and 3/4 points
for fraction in [0.25, 0.75]:
frame_pos = int(scene['start_frame'] +
fraction * (scene['end_frame'] - scene['start_frame']))
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_pos)
ret, frame = cap.read()
if ret:
keyframe = {
'scene_id': scene['id'],
'frame_number': frame_pos,
'timestamp': frame_pos / fps,
'type': 'temporal_sample',
'frame_data': frame,
'visual_features': self._extract_visual_features(frame)
}
scene_keyframes.append(keyframe)
keyframes.extend(scene_keyframes)
cap.release()
logger.info(f"πŸ–ΌοΈ Keyframe extraction complete: {len(keyframes)} keyframes extracted")
return keyframes
except Exception as e:
logger.error(f"❌ Keyframe extraction failed: {e}")
return []
def _extract_visual_features(self, frame: np.ndarray) -> Dict[str, Any]:
"""Extract visual features from a frame."""
try:
features = {}
# Color histogram
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
hist_h = cv2.calcHist([hsv], [0], None, [32], [0, 180])
hist_s = cv2.calcHist([hsv], [1], None, [32], [0, 256])
hist_v = cv2.calcHist([hsv], [2], None, [32], [0, 256])
features['color_histogram'] = {
'hue': hist_h.flatten().tolist(),
'saturation': hist_s.flatten().tolist(),
'value': hist_v.flatten().tolist()
}
# Edge density
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150)
edge_density = np.sum(edges > 0) / (edges.shape[0] * edges.shape[1])
features['edge_density'] = float(edge_density)
# Brightness and contrast
features['brightness'] = float(np.mean(gray))
features['contrast'] = float(np.std(gray))
# Dominant colors
features['dominant_colors'] = self._get_dominant_colors(frame)
return features
except Exception as e:
logger.error(f"❌ Visual feature extraction failed: {e}")
return {}
def _get_dominant_colors(self, frame: np.ndarray, k: int = 3) -> List[List[int]]:
"""Extract dominant colors from frame using k-means clustering."""
try:
# Reshape frame to list of pixels
pixels = frame.reshape(-1, 3)
# Use k-means to find dominant colors
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
kmeans.fit(pixels)
# Get dominant colors
colors = kmeans.cluster_centers_.astype(int)
return colors.tolist()
except ImportError:
# Fallback without sklearn
return [[128, 128, 128]] # Gray as default
except Exception as e:
logger.error(f"❌ Dominant color extraction failed: {e}")
return [[128, 128, 128]]
def _analyze_temporal_patterns(self, video_path: str,
object_detections: List[List[Dict[str, Any]]] = None,
scenes: List[Dict[str, Any]] = None) -> Dict[str, Any]:
"""Analyze temporal patterns in video content."""
try:
temporal_analysis = {
'motion_patterns': [],
'object_appearance_patterns': [],
'scene_transition_patterns': [],
'activity_levels': [],
'periodicity': {}
}
if not object_detections:
return temporal_analysis
# Analyze motion patterns
motion_levels = []
for frame_detections in object_detections:
# Calculate motion level based on number and size of objects
motion_level = len(frame_detections)
if frame_detections:
avg_area = np.mean([det.get('area', 0) for det in frame_detections])
motion_level += avg_area / 10000 # Normalize area contribution
motion_levels.append(motion_level)
temporal_analysis['motion_patterns'] = motion_levels
# Analyze object appearance patterns
object_counts_over_time = []
bird_counts_over_time = []
animal_counts_over_time = []
for frame_detections in object_detections:
object_count = len(frame_detections)
bird_count = sum(1 for det in frame_detections
if det.get('species_type') == 'bird')
animal_count = sum(1 for det in frame_detections
if det.get('species_type') == 'animal')
object_counts_over_time.append(object_count)
bird_counts_over_time.append(bird_count)
animal_counts_over_time.append(animal_count)
temporal_analysis['object_appearance_patterns'] = {
'total_objects': object_counts_over_time,
'birds': bird_counts_over_time,
'animals': animal_counts_over_time
}
# Analyze activity levels
window_size = self.temporal_params['pattern_window']
activity_levels = []
for i in range(0, len(motion_levels), window_size):
window = motion_levels[i:i+window_size]
if window:
activity_level = {
'start_frame': i,
'end_frame': min(i + window_size, len(motion_levels)),
'avg_motion': np.mean(window),
'max_motion': np.max(window),
'motion_variance': np.var(window)
}
activity_levels.append(activity_level)
temporal_analysis['activity_levels'] = activity_levels
# Detect periodicity in object appearances
if len(bird_counts_over_time) > 20: # Need sufficient data
temporal_analysis['periodicity'] = self._detect_periodicity(
bird_counts_over_time, animal_counts_over_time
)
logger.info("πŸ“ˆ Temporal pattern analysis complete")
return temporal_analysis
except Exception as e:
logger.error(f"❌ Temporal pattern analysis failed: {e}")
return {}
def _detect_periodicity(self, bird_counts: List[int],
animal_counts: List[int]) -> Dict[str, Any]:
"""Detect periodic patterns in object appearances."""
try:
periodicity = {
'bird_patterns': {},
'animal_patterns': {},
'combined_patterns': {}
}
# Simple autocorrelation-based periodicity detection
def autocorrelation(signal, max_lag=50):
signal = np.array(signal)
n = len(signal)
signal = signal - np.mean(signal)
autocorr = []
for lag in range(min(max_lag, n//2)):
if n - lag > 0:
corr = np.corrcoef(signal[:-lag], signal[lag:])[0, 1]
autocorr.append(corr if not np.isnan(corr) else 0)
else:
autocorr.append(0)
return autocorr
# Analyze bird count periodicity
bird_autocorr = autocorrelation(bird_counts)
if bird_autocorr:
max_corr_idx = np.argmax(bird_autocorr[1:]) + 1 # Skip lag 0
periodicity['bird_patterns'] = {
'dominant_period': max_corr_idx,
'correlation_strength': bird_autocorr[max_corr_idx],
'is_periodic': bird_autocorr[max_corr_idx] > 0.3
}
# Analyze animal count periodicity
animal_autocorr = autocorrelation(animal_counts)
if animal_autocorr:
max_corr_idx = np.argmax(animal_autocorr[1:]) + 1
periodicity['animal_patterns'] = {
'dominant_period': max_corr_idx,
'correlation_strength': animal_autocorr[max_corr_idx],
'is_periodic': animal_autocorr[max_corr_idx] > 0.3
}
return periodicity
except Exception as e:
logger.error(f"❌ Periodicity detection failed: {e}")
return {}
def _summarize_content(self, scenes: List[Dict[str, Any]],
keyframes: List[Dict[str, Any]],
temporal_analysis: Dict[str, Any],
object_detections: List[List[Dict[str, Any]]] = None) -> Dict[str, Any]:
"""Generate comprehensive content summary."""
try:
summary = {
'overview': {},
'scene_summary': [],
'key_moments': [],
'content_highlights': [],
'statistical_summary': {}
}
# Overview
total_duration = sum(scene.get('duration', 0) for scene in scenes)
summary['overview'] = {
'total_scenes': len(scenes),
'total_duration': total_duration,
'avg_scene_duration': total_duration / len(scenes) if scenes else 0,
'keyframes_extracted': len(keyframes)
}
# Scene summary
for scene in scenes:
scene_summary = {
'scene_id': scene['id'],
'duration': scene['duration'],
'description': f"Scene {scene['id'] + 1}: {scene['duration']:.1f}s",
'activity_level': 'unknown'
}
# Determine activity level from temporal analysis
if temporal_analysis.get('activity_levels'):
scene_start_frame = scene['start_frame']
scene_end_frame = scene['end_frame']
relevant_activities = [
activity for activity in temporal_analysis['activity_levels']
if (activity['start_frame'] <= scene_end_frame and
activity['end_frame'] >= scene_start_frame)
]
if relevant_activities:
avg_motion = np.mean([a['avg_motion'] for a in relevant_activities])
if avg_motion > 2:
scene_summary['activity_level'] = 'high'
elif avg_motion > 1:
scene_summary['activity_level'] = 'medium'
else:
scene_summary['activity_level'] = 'low'
summary['scene_summary'].append(scene_summary)
# Key moments (high activity periods)
if temporal_analysis.get('activity_levels'):
high_activity_moments = [
activity for activity in temporal_analysis['activity_levels']
if activity['avg_motion'] > 2
]
summary['key_moments'] = [
{
'timestamp': moment['start_frame'] / 30, # Assume 30 FPS
'duration': (moment['end_frame'] - moment['start_frame']) / 30,
'activity_level': moment['avg_motion'],
'description': f"High activity period: {moment['avg_motion']:.1f}"
}
for moment in high_activity_moments[:5] # Top 5 moments
]
# Statistical summary
if object_detections:
all_detections = [det for frame_dets in object_detections for det in frame_dets]
species_counts = {}
for detection in all_detections:
species = detection.get('species_type', 'unknown')
species_counts[species] = species_counts.get(species, 0) + 1
summary['statistical_summary'] = {
'total_detections': len(all_detections),
'species_distribution': species_counts,
'avg_detections_per_frame': len(all_detections) / len(object_detections) if object_detections else 0
}
logger.info("πŸ“‹ Content summarization complete")
return summary
except Exception as e:
logger.error(f"❌ Content summarization failed: {e}")
return {}
def _analyze_object_interactions(self, object_detections: List[List[Dict[str, Any]]] = None,
scenes: List[Dict[str, Any]] = None) -> Dict[str, Any]:
"""Analyze interactions between detected objects."""
try:
interaction_analysis = {
'proximity_interactions': [],
'temporal_interactions': [],
'species_interactions': {},
'interaction_summary': {}
}
if not object_detections:
return interaction_analysis
# Analyze proximity interactions within frames
for frame_idx, frame_detections in enumerate(object_detections):
if len(frame_detections) > 1:
# Check all pairs of objects in the frame
for i, obj1 in enumerate(frame_detections):
for j, obj2 in enumerate(frame_detections[i+1:], i+1):
distance = self._calculate_object_distance(obj1, obj2)
if distance < 100: # Close proximity threshold
interaction = {
'frame': frame_idx,
'timestamp': frame_idx / 30, # Assume 30 FPS
'object1': obj1.get('class', 'unknown'),
'object2': obj2.get('class', 'unknown'),
'distance': distance,
'interaction_type': 'proximity'
}
interaction_analysis['proximity_interactions'].append(interaction)
# Analyze species interactions
species_pairs = {}
for interaction in interaction_analysis['proximity_interactions']:
obj1_type = interaction['object1']
obj2_type = interaction['object2']
pair_key = tuple(sorted([obj1_type, obj2_type]))
if pair_key not in species_pairs:
species_pairs[pair_key] = []
species_pairs[pair_key].append(interaction)
interaction_analysis['species_interactions'] = {
f"{pair[0]}-{pair[1]}": {
'interaction_count': len(interactions),
'avg_distance': np.mean([i['distance'] for i in interactions]),
'duration': len(interactions) / 30 # Approximate duration
}
for pair, interactions in species_pairs.items()
}
# Interaction summary
interaction_analysis['interaction_summary'] = {
'total_proximity_interactions': len(interaction_analysis['proximity_interactions']),
'unique_species_pairs': len(species_pairs),
'most_interactive_pair': max(species_pairs.keys(),
key=lambda x: len(species_pairs[x])) if species_pairs else None
}
logger.info("🀝 Object interaction analysis complete")
return interaction_analysis
except Exception as e:
logger.error(f"❌ Object interaction analysis failed: {e}")
return {}
def _calculate_object_distance(self, obj1: Dict[str, Any], obj2: Dict[str, Any]) -> float:
"""Calculate distance between two objects based on their centers."""
try:
center1 = obj1.get('center', [0, 0])
center2 = obj2.get('center', [0, 0])
distance = np.sqrt((center1[0] - center2[0])**2 + (center1[1] - center2[1])**2)
return float(distance)
except Exception as e:
logger.error(f"❌ Distance calculation failed: {e}")
return float('inf')
def _create_content_report(self, metadata: Dict[str, Any],
scenes: List[Dict[str, Any]],
keyframes: List[Dict[str, Any]],
temporal_analysis: Dict[str, Any],
content_summary: Dict[str, Any],
interaction_analysis: Dict[str, Any],
question: str = None) -> Dict[str, Any]:
"""Create comprehensive content analysis report."""
try:
report = {
'success': True,
'analysis_timestamp': datetime.now().isoformat(),
'question': question,
'metadata': metadata,
'content_analysis': {
'scenes': scenes,
'keyframes': [
{k: v for k, v in kf.items() if k != 'frame_data'} # Exclude frame data
for kf in keyframes
],
'temporal_patterns': temporal_analysis,
'content_summary': content_summary,
'interactions': interaction_analysis
},
'insights': [],
'recommendations': []
}
# Generate insights
insights = []
# Scene insights
if scenes:
avg_scene_duration = np.mean([s['duration'] for s in scenes])
insights.append(f"Video contains {len(scenes)} distinct scenes with average duration of {avg_scene_duration:.1f}s")
# Activity insights
if temporal_analysis.get('activity_levels'):
high_activity_count = sum(1 for a in temporal_analysis['activity_levels'] if a['avg_motion'] > 2)
insights.append(f"Detected {high_activity_count} high-activity periods in the video")
# Interaction insights
if interaction_analysis.get('interaction_summary', {}).get('total_proximity_interactions', 0) > 0:
total_interactions = interaction_analysis['interaction_summary']['total_proximity_interactions']
insights.append(f"Found {total_interactions} object proximity interactions")
report['insights'] = insights
# Generate recommendations
recommendations = []
if question and 'bird' in question.lower():
if temporal_analysis.get('object_appearance_patterns', {}).get('birds'):
max_birds = max(temporal_analysis['object_appearance_patterns']['birds'])
recommendations.append(f"Maximum simultaneous birds detected: {max_birds}")
if len(scenes) > 10:
recommendations.append("Video has many scene changes - consider analyzing key scenes only")
report['recommendations'] = recommendations
logger.info("πŸ“Š Content analysis report generated successfully")
return report
except Exception as e:
logger.error(f"❌ Failed to create content report: {e}")
return {
'success': False,
'error': f'Failed to create content report: {str(e)}'
}
def get_capabilities(self) -> Dict[str, Any]:
"""Get video content analyzer capabilities."""
return {
'available': self.available,
'scene_change_threshold': self.scene_change_threshold,
'keyframe_interval': self.keyframe_interval,
'min_scene_duration': self.min_scene_duration,
'max_scenes': self.max_scenes,
'features': [
'Scene segmentation',
'Keyframe extraction',
'Temporal pattern analysis',
'Object interaction analysis',
'Content summarization',
'Visual feature extraction',
'Activity level detection',
'Periodicity detection'
]
}
# Factory function for creating content analyzer
def create_video_content_analyzer() -> VideoContentAnalyzer:
"""Create and return a video content analyzer instance."""
return VideoContentAnalyzer()
if __name__ == "__main__":
# Test the content analyzer
analyzer = VideoContentAnalyzer()
print(f"Content analyzer available: {analyzer.available}")
print(f"Capabilities: {json.dumps(analyzer.get_capabilities(), indent=2)}")