gaia-enhanced-agent / tests /performance_benchmark.py
GAIA Agent Deployment
Deploy Complete Enhanced GAIA Agent with Phase 1-6 Improvements
9a6a4dc
"""
Performance Benchmark Test Suite for GAIA Agent
Measures response time, accuracy, and reliability metrics to ensure 90%+ accuracy target.
This module provides comprehensive performance testing including:
1. Response time benchmarking
2. Accuracy measurement across question types
3. Reliability and consistency testing
4. Tool usage efficiency analysis
5. Memory and resource usage monitoring
"""
import pytest
import sys
import os
import time
import statistics
import psutil
import threading
from pathlib import Path
from typing import Dict, List, Any, Optional, Tuple
from dataclasses import dataclass
from concurrent.futures import ThreadPoolExecutor, as_completed
# Add the deployment-ready directory to the path
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
from agents.fixed_enhanced_unified_agno_agent import FixedGAIAAgent
@dataclass
class PerformanceMetrics:
"""Data class for storing performance metrics."""
response_time: float
accuracy: float
memory_usage_mb: float
cpu_usage_percent: float
tool_calls: int
success: bool
error_message: Optional[str] = None
@dataclass
class BenchmarkResults:
"""Data class for storing benchmark results."""
total_tests: int
successful_tests: int
failed_tests: int
average_response_time: float
median_response_time: float
min_response_time: float
max_response_time: float
overall_accuracy: float
memory_usage_stats: Dict[str, float]
cpu_usage_stats: Dict[str, float]
tool_usage_stats: Dict[str, int]
category_performance: Dict[str, Dict[str, float]]
class PerformanceBenchmark:
"""Performance benchmark suite for GAIA Agent."""
def __init__(self):
"""Initialize the performance benchmark."""
self.agent = FixedGAIAAgent()
self.metrics: List[PerformanceMetrics] = []
# Performance thresholds
self.max_response_time = 30.0 # 30 seconds
self.target_accuracy = 0.9 # 90% accuracy
self.max_memory_usage = 1000 # 1GB in MB
self.max_cpu_usage = 80 # 80% CPU
# Test questions for benchmarking
self.benchmark_questions = self._get_benchmark_questions()
def _get_benchmark_questions(self) -> List[Dict[str, Any]]:
"""Get standardized benchmark questions."""
return [
# Fast mathematical questions
{
'question': 'What is 25 * 17?',
'expected': '425',
'category': 'math_basic',
'expected_time': 5.0
},
{
'question': 'What is 144 / 12?',
'expected': '12',
'category': 'math_basic',
'expected_time': 5.0
},
{
'question': 'Calculate 2^8',
'expected': '256',
'category': 'math_basic',
'expected_time': 5.0
},
# Medium complexity questions
{
'question': 'What is the factorial of 5?',
'expected': '120',
'category': 'math_medium',
'expected_time': 10.0
},
{
'question': 'What is the square root of 144?',
'expected': '12',
'category': 'math_medium',
'expected_time': 10.0
},
# Knowledge questions
{
'question': 'What is the capital of France?',
'expected': 'Paris',
'category': 'knowledge',
'expected_time': 15.0
},
{
'question': 'In what year was the Eiffel Tower completed?',
'expected': '1889',
'category': 'knowledge',
'expected_time': 15.0
},
# Complex questions
{
'question': 'Calculate the square root of 144, then multiply by 5',
'expected': '60',
'category': 'complex',
'expected_time': 20.0
}
]
def measure_single_question_performance(self, question_data: Dict[str, Any]) -> PerformanceMetrics:
"""Measure performance for a single question."""
question = question_data['question']
expected = question_data['expected']
category = question_data['category']
# Get initial system metrics
process = psutil.Process()
initial_memory = process.memory_info().rss / 1024 / 1024 # MB
initial_cpu = process.cpu_percent()
# Measure response time
start_time = time.time()
try:
# Execute question
answer = self.agent(question)
success = True
error_message = None
# Validate accuracy
accuracy = self._calculate_accuracy(answer, expected, category)
except Exception as e:
answer = None
success = False
error_message = str(e)
accuracy = 0.0
end_time = time.time()
response_time = end_time - start_time
# Get final system metrics
final_memory = process.memory_info().rss / 1024 / 1024 # MB
final_cpu = process.cpu_percent()
memory_usage = final_memory - initial_memory
cpu_usage = max(final_cpu - initial_cpu, 0)
# Count tool calls (approximate)
tool_calls = self._estimate_tool_calls(question, category)
return PerformanceMetrics(
response_time=response_time,
accuracy=accuracy,
memory_usage_mb=memory_usage,
cpu_usage_percent=cpu_usage,
tool_calls=tool_calls,
success=success,
error_message=error_message
)
def run_response_time_benchmark(self) -> Dict[str, float]:
"""Run response time benchmark across all question types."""
print("πŸš€ Running Response Time Benchmark...")
response_times = []
category_times = {}
for question_data in self.benchmark_questions:
category = question_data['category']
expected_time = question_data['expected_time']
print(f"⏱️ Testing: {question_data['question'][:50]}...")
metrics = self.measure_single_question_performance(question_data)
response_times.append(metrics.response_time)
if category not in category_times:
category_times[category] = []
category_times[category].append(metrics.response_time)
# Check against expected time
if metrics.response_time > expected_time:
print(f"⚠️ Slower than expected: {metrics.response_time:.2f}s > {expected_time}s")
else:
print(f"βœ… Within expected time: {metrics.response_time:.2f}s <= {expected_time}s")
# Calculate statistics
avg_time = statistics.mean(response_times)
median_time = statistics.median(response_times)
min_time = min(response_times)
max_time = max(response_times)
print(f"\nπŸ“Š Response Time Statistics:")
print(f"Average: {avg_time:.2f}s")
print(f"Median: {median_time:.2f}s")
print(f"Min: {min_time:.2f}s")
print(f"Max: {max_time:.2f}s")
# Category breakdown
print(f"\nπŸ“‹ Category Breakdown:")
for category, times in category_times.items():
cat_avg = statistics.mean(times)
print(f"{category}: {cat_avg:.2f}s avg")
return {
'average': avg_time,
'median': median_time,
'min': min_time,
'max': max_time,
'category_averages': {cat: statistics.mean(times) for cat, times in category_times.items()}
}
def run_accuracy_benchmark(self) -> Dict[str, float]:
"""Run accuracy benchmark across all question types."""
print("🎯 Running Accuracy Benchmark...")
total_questions = 0
correct_answers = 0
category_accuracy = {}
for question_data in self.benchmark_questions:
category = question_data['category']
print(f"πŸ” Testing: {question_data['question'][:50]}...")
metrics = self.measure_single_question_performance(question_data)
total_questions += 1
if metrics.accuracy > 0.8: # Consider >80% accuracy as correct
correct_answers += 1
print(f"βœ… Correct answer (accuracy: {metrics.accuracy:.2f})")
else:
print(f"❌ Incorrect answer (accuracy: {metrics.accuracy:.2f})")
# Track category accuracy
if category not in category_accuracy:
category_accuracy[category] = {'correct': 0, 'total': 0}
category_accuracy[category]['total'] += 1
if metrics.accuracy > 0.8:
category_accuracy[category]['correct'] += 1
# Calculate overall accuracy
overall_accuracy = correct_answers / total_questions if total_questions > 0 else 0
print(f"\nπŸ“Š Accuracy Statistics:")
print(f"Overall Accuracy: {overall_accuracy:.2%}")
print(f"Correct Answers: {correct_answers}/{total_questions}")
# Category breakdown
print(f"\nπŸ“‹ Category Accuracy:")
category_percentages = {}
for category, stats in category_accuracy.items():
cat_accuracy = stats['correct'] / stats['total'] if stats['total'] > 0 else 0
category_percentages[category] = cat_accuracy
print(f"{category}: {cat_accuracy:.2%} ({stats['correct']}/{stats['total']})")
return {
'overall': overall_accuracy,
'correct_count': correct_answers,
'total_count': total_questions,
'category_accuracy': category_percentages
}
def run_reliability_benchmark(self, iterations: int = 5) -> Dict[str, Any]:
"""Run reliability benchmark with multiple iterations."""
print(f"πŸ”„ Running Reliability Benchmark ({iterations} iterations)...")
# Test the same question multiple times
test_question = {
'question': 'What is 25 * 17?',
'expected': '425',
'category': 'math_basic'
}
results = []
response_times = []
accuracies = []
for i in range(iterations):
print(f"πŸ”„ Iteration {i+1}/{iterations}")
metrics = self.measure_single_question_performance(test_question)
results.append(metrics)
response_times.append(metrics.response_time)
accuracies.append(metrics.accuracy)
# Calculate consistency metrics
time_std = statistics.stdev(response_times) if len(response_times) > 1 else 0
time_cv = time_std / statistics.mean(response_times) if statistics.mean(response_times) > 0 else 0
accuracy_std = statistics.stdev(accuracies) if len(accuracies) > 1 else 0
success_rate = sum(1 for r in results if r.success) / len(results)
print(f"\nπŸ“Š Reliability Statistics:")
print(f"Success Rate: {success_rate:.2%}")
print(f"Response Time CV: {time_cv:.2%}")
print(f"Accuracy Std Dev: {accuracy_std:.3f}")
return {
'success_rate': success_rate,
'response_time_consistency': time_cv,
'accuracy_consistency': accuracy_std,
'iterations': iterations,
'all_results': results
}
def run_concurrent_load_test(self, concurrent_requests: int = 3) -> Dict[str, Any]:
"""Run concurrent load test to measure performance under load."""
print(f"⚑ Running Concurrent Load Test ({concurrent_requests} concurrent requests)...")
test_question = {
'question': 'What is 144 / 12?',
'expected': '12',
'category': 'math_basic'
}
def run_single_test():
return self.measure_single_question_performance(test_question)
start_time = time.time()
# Run concurrent requests
with ThreadPoolExecutor(max_workers=concurrent_requests) as executor:
futures = [executor.submit(run_single_test) for _ in range(concurrent_requests)]
results = [future.result() for future in as_completed(futures)]
end_time = time.time()
total_time = end_time - start_time
# Analyze results
success_count = sum(1 for r in results if r.success)
avg_response_time = statistics.mean([r.response_time for r in results])
max_response_time = max([r.response_time for r in results])
throughput = concurrent_requests / total_time # requests per second
print(f"\nπŸ“Š Load Test Results:")
print(f"Total Time: {total_time:.2f}s")
print(f"Success Rate: {success_count}/{concurrent_requests} ({success_count/concurrent_requests:.2%})")
print(f"Average Response Time: {avg_response_time:.2f}s")
print(f"Max Response Time: {max_response_time:.2f}s")
print(f"Throughput: {throughput:.2f} requests/second")
return {
'total_time': total_time,
'success_rate': success_count / concurrent_requests,
'average_response_time': avg_response_time,
'max_response_time': max_response_time,
'throughput': throughput,
'concurrent_requests': concurrent_requests
}
def run_memory_usage_benchmark(self) -> Dict[str, float]:
"""Run memory usage benchmark."""
print("πŸ’Ύ Running Memory Usage Benchmark...")
process = psutil.Process()
initial_memory = process.memory_info().rss / 1024 / 1024 # MB
memory_measurements = [initial_memory]
# Run several questions and monitor memory
for question_data in self.benchmark_questions[:5]: # Test first 5 questions
print(f"πŸ’Ύ Testing memory usage: {question_data['question'][:30]}...")
before_memory = process.memory_info().rss / 1024 / 1024
metrics = self.measure_single_question_performance(question_data)
after_memory = process.memory_info().rss / 1024 / 1024
memory_measurements.append(after_memory)
print(f"Memory: {before_memory:.1f}MB β†’ {after_memory:.1f}MB (Ξ”{after_memory-before_memory:+.1f}MB)")
final_memory = process.memory_info().rss / 1024 / 1024
total_memory_increase = final_memory - initial_memory
max_memory = max(memory_measurements)
avg_memory = statistics.mean(memory_measurements)
print(f"\nπŸ“Š Memory Usage Statistics:")
print(f"Initial Memory: {initial_memory:.1f}MB")
print(f"Final Memory: {final_memory:.1f}MB")
print(f"Total Increase: {total_memory_increase:+.1f}MB")
print(f"Peak Memory: {max_memory:.1f}MB")
print(f"Average Memory: {avg_memory:.1f}MB")
return {
'initial_memory_mb': initial_memory,
'final_memory_mb': final_memory,
'total_increase_mb': total_memory_increase,
'peak_memory_mb': max_memory,
'average_memory_mb': avg_memory
}
def run_comprehensive_benchmark(self) -> BenchmarkResults:
"""Run comprehensive benchmark covering all aspects."""
print("πŸ† Running Comprehensive Performance Benchmark")
print("=" * 60)
# Run all benchmark components
response_time_results = self.run_response_time_benchmark()
accuracy_results = self.run_accuracy_benchmark()
reliability_results = self.run_reliability_benchmark()
load_test_results = self.run_concurrent_load_test()
memory_results = self.run_memory_usage_benchmark()
# Compile comprehensive results
results = BenchmarkResults(
total_tests=len(self.benchmark_questions),
successful_tests=accuracy_results['correct_count'],
failed_tests=accuracy_results['total_count'] - accuracy_results['correct_count'],
average_response_time=response_time_results['average'],
median_response_time=response_time_results['median'],
min_response_time=response_time_results['min'],
max_response_time=response_time_results['max'],
overall_accuracy=accuracy_results['overall'],
memory_usage_stats=memory_results,
cpu_usage_stats={'average': 0, 'peak': 0}, # Would need more detailed CPU monitoring
tool_usage_stats={}, # Would need tool call tracking
category_performance={
cat: {'accuracy': acc, 'avg_time': response_time_results['category_averages'].get(cat, 0)}
for cat, acc in accuracy_results['category_accuracy'].items()
}
)
# Print comprehensive summary
print("\nπŸ† COMPREHENSIVE BENCHMARK RESULTS")
print("=" * 60)
print(f"πŸ“Š Overall Performance:")
print(f" Accuracy: {results.overall_accuracy:.2%} (Target: {self.target_accuracy:.2%})")
print(f" Average Response Time: {results.average_response_time:.2f}s (Limit: {self.max_response_time}s)")
print(f" Success Rate: {results.successful_tests}/{results.total_tests}")
print(f"\n⏱️ Response Time Analysis:")
print(f" Average: {results.average_response_time:.2f}s")
print(f" Median: {results.median_response_time:.2f}s")
print(f" Range: {results.min_response_time:.2f}s - {results.max_response_time:.2f}s")
print(f"\nπŸ’Ύ Memory Usage:")
print(f" Peak: {memory_results['peak_memory_mb']:.1f}MB")
print(f" Average: {memory_results['average_memory_mb']:.1f}MB")
print(f" Total Increase: {memory_results['total_increase_mb']:+.1f}MB")
print(f"\nπŸ”„ Reliability:")
print(f" Success Rate: {reliability_results['success_rate']:.2%}")
print(f" Response Time Consistency: {reliability_results['response_time_consistency']:.2%}")
print(f"\n⚑ Load Performance:")
print(f" Concurrent Success Rate: {load_test_results['success_rate']:.2%}")
print(f" Throughput: {load_test_results['throughput']:.2f} req/s")
# Validate against targets
meets_accuracy_target = results.overall_accuracy >= self.target_accuracy
meets_response_time_target = results.average_response_time <= self.max_response_time
meets_memory_target = memory_results['peak_memory_mb'] <= self.max_memory_usage
print(f"\nβœ… Target Validation:")
print(f" Accuracy Target: {'βœ… PASS' if meets_accuracy_target else '❌ FAIL'}")
print(f" Response Time Target: {'βœ… PASS' if meets_response_time_target else '❌ FAIL'}")
print(f" Memory Usage Target: {'βœ… PASS' if meets_memory_target else '❌ FAIL'}")
overall_pass = meets_accuracy_target and meets_response_time_target and meets_memory_target
print(f"\nπŸ† OVERALL RESULT: {'βœ… PASS - READY FOR GAIA EVALUATION' if overall_pass else '❌ FAIL - NEEDS OPTIMIZATION'}")
return results
def _calculate_accuracy(self, actual: str, expected: str, category: str) -> float:
"""Calculate accuracy score for an answer."""
if not actual or actual == "unknown":
return 0.0
actual_clean = actual.strip().lower()
expected_clean = expected.strip().lower()
# Exact match
if actual_clean == expected_clean:
return 1.0
# Numeric comparison for math questions
if category.startswith('math'):
try:
actual_num = float(actual.replace(',', ''))
expected_num = float(expected.replace(',', ''))
if abs(actual_num - expected_num) < 0.01:
return 1.0
else:
return 0.0
except ValueError:
pass
# Partial match for text answers
if expected_clean in actual_clean or actual_clean in expected_clean:
return 0.8
return 0.0
def _estimate_tool_calls(self, question: str, category: str) -> int:
"""Estimate number of tool calls based on question type."""
if category.startswith('math'):
return 1 # Usually calculator or python
elif category == 'knowledge':
return 2 # Usually wikipedia + processing
elif category == 'complex':
return 3 # Multiple tools
else:
return 1
class TestPerformanceBenchmark:
"""Test suite for performance benchmarking."""
def setup_method(self):
"""Set up test fixtures."""
self.benchmark = PerformanceBenchmark()
def test_agent_availability(self):
"""Test that the agent is available for benchmarking."""
assert self.benchmark.agent is not None, "Agent should be initialized"
assert self.benchmark.agent.available, "Agent should be available"
def test_response_time_benchmark(self):
"""Test response time benchmark."""
if not self.benchmark.agent.available:
pytest.skip("Agent not available for benchmarking")
results = self.benchmark.run_response_time_benchmark()
# Validate results structure
assert 'average' in results
assert 'median' in results
assert 'min' in results
assert 'max' in results
# Validate performance thresholds
assert results['average'] <= self.benchmark.max_response_time, f"Average response time {results['average']:.2f}s exceeds limit"
assert results['max'] <= self.benchmark.max_response_time * 2, f"Max response time {results['max']:.2f}s too high"
print(f"βœ… Response time benchmark passed - Average: {results['average']:.2f}s")
def test_accuracy_benchmark(self):
"""Test accuracy benchmark."""
if not self.benchmark.agent.available:
pytest.skip("Agent not available for benchmarking")
results = self.benchmark.run_accuracy_benchmark()
# Validate results structure
assert 'overall' in results
assert 'correct_count' in results
assert 'total_count' in results
# Validate accuracy threshold
assert results['overall'] >= 0.5, f"Accuracy {results['overall']:.2%} too low for basic functionality"
print(f"βœ… Accuracy benchmark completed - Overall: {results['overall']:.2%}")
def test_reliability_benchmark(self):
"""Test reliability benchmark."""
if not self.benchmark.agent.available:
pytest.skip("Agent not available for benchmarking")
results = self.benchmark.run_reliability_benchmark(iterations=3)
# Validate results structure
assert 'success_rate' in results
assert 'response_time_consistency' in results
# Validate reliability thresholds
assert results['success_rate'] >= 0.8, f"Success rate {results['success_rate']:.2%} too low"
assert results['response_time_consistency'] <= 0.5, f"Response time too inconsistent: {results['response_time_consistency']:.2%}"
print(f"βœ… Reliability benchmark passed - Success rate: {results['success_rate']:.2%}")
def test_memory_usage_benchmark(self):
"""Test memory usage benchmark."""
if not self.benchmark.agent.available:
pytest.skip("Agent not available for benchmarking")
results = self.benchmark.run_memory_usage_benchmark()
# Validate results structure
assert 'peak_memory_mb' in results
assert 'total_increase_mb' in results
# Validate memory usage
assert results['peak_memory_mb'] <= self.benchmark.max_memory_usage, f"Peak memory {results['peak_memory_mb']:.1f}MB exceeds limit"
print(f"βœ… Memory usage benchmark passed - Peak: {results['peak_memory_mb']:.1f}MB")
def test_comprehensive_benchmark(self):
"""Test comprehensive benchmark suite."""
if not self.benchmark.agent.available:
pytest.skip("Agent not available for benchmarking")
results = self.benchmark.run_comprehensive_benchmark()
# Validate comprehensive results
assert isinstance(results, BenchmarkResults)
assert results.total_tests > 0
assert results.overall_accuracy >= 0.0
assert results.average_response_time > 0.0
# Log final results
print(f"βœ… Comprehensive benchmark completed")
print(f" Accuracy: {results.overall_accuracy:.2%}")
print(f" Avg Response Time: {results.average_response_time:.2f}s")
print(f" Success Rate: {results.successful_tests}/{results.total_tests}")
if __name__ == "__main__":
# Run performance benchmarks
benchmark = PerformanceBenchmark()
if benchmark.agent.available:
print("πŸš€ Starting Performance Benchmark Suite")
results = benchmark.run_comprehensive_benchmark()
# Save results to file
import json
results_dict = {
'total_tests': results.total_tests,
'successful_tests': results.successful_tests,
'failed_tests': results.failed_tests,
'overall_accuracy': results.overall_accuracy,
'average_response_time': results.average_response_time,
'median_response_time': results.median_response_time,
'min_response_time': results.min_response_time,
'max_response_time': results.max_response_time,
'memory_usage_stats': results.memory_usage_stats,
'category_performance': results.category_performance
}
with open('benchmark_results.json', 'w') as f:
json.dump(results_dict, f, indent=2)
print(f"\nπŸ“Š Results saved to benchmark_results.json")
else:
print("❌ Agent not available - cannot run benchmarks")
# Also run pytest tests
pytest.main([__file__, "-v"])