File size: 15,948 Bytes
9a6a4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
"""
Intelligent Question Analysis System

This module provides sophisticated question understanding capabilities that go beyond
hardcoded patterns to dynamically analyze what format of answer is expected.

Key Features:
1. Semantic question analysis using NLP techniques
2. Dynamic format requirement detection
3. Context-aware answer formatting rules
4. Flexible and extensible for any question type

Author: GAIA Enhanced Intelligence System
"""

import re
import logging
from typing import Dict, Any, List, Tuple, Optional, Set
from dataclasses import dataclass
from enum import Enum

logger = logging.getLogger(__name__)


class QuestionIntent(Enum):
    """High-level intents that questions can have."""
    COUNT = "count"                    # How many, count, number of
    IDENTIFY = "identify"              # What is, who is, which
    LIST = "list"                      # List all, name all, enumerate
    EXTRACT = "extract"                # Extract specific information
    COMPARE = "compare"                # Compare, difference, similarity
    CALCULATE = "calculate"            # Mathematical operations
    DESCRIBE = "describe"              # Describe, explain
    CLASSIFY = "classify"              # Categorize, type of
    LOCATE = "locate"                  # Where, location
    TEMPORAL = "temporal"              # When, time-related
    UNKNOWN = "unknown"


class AnswerFormat(Enum):
    """Expected answer formats based on question analysis."""
    NUMBER = "number"                  # Pure numeric: "42", "3.14"
    LIST_ALPHABETICAL = "list_alpha"   # Sorted list: "apple, banana, cherry"
    LIST_CHRONOLOGICAL = "list_chrono" # Time-ordered list
    LIST_NUMERICAL = "list_numeric"    # Number-ordered list
    NAME_FULL = "name_full"            # Full names: "John Smith, Jane Doe"
    NAME_FIRST = "name_first"          # First names only: "John, Jane"
    NAME_LAST = "name_last"            # Last names only: "Smith, Doe"
    NAME_INITIALS = "name_initials"    # Initials: "J.S., J.D."
    TEXT_CONCISE = "text_concise"      # Brief text answer
    TEXT_DETAILED = "text_detailed"    # Detailed explanation
    BOOLEAN = "boolean"                # Yes/No
    DATE = "date"                      # Date format
    PERCENTAGE = "percentage"          # Percentage value
    CURRENCY = "currency"              # Money amount


@dataclass
class QuestionAnalysis:
    """Comprehensive analysis of a question."""
    intent: QuestionIntent
    expected_format: AnswerFormat
    confidence: float
    key_entities: List[str]
    modifiers: List[str]
    context_clues: Dict[str, Any]
    formatting_rules: Dict[str, Any]


class IntelligentQuestionAnalyzer:
    """
    Advanced question analyzer that understands intent and format requirements
    using natural language processing techniques.
    """
    
    def __init__(self):
        self.logger = logging.getLogger(__name__)
        
        # Intent detection patterns
        self.INTENT_PATTERNS = {
            QuestionIntent.COUNT: [
                r'\bhow many\b', r'\bcount\b', r'\bnumber of\b', r'\bhow much\b',
                r'\bquantity\b', r'\btotal\b', r'\bsum\b'
            ],
            QuestionIntent.IDENTIFY: [
                r'\bwhat is\b', r'\bwho is\b', r'\bwhich\b', r'\bwhat are\b',
                r'\bidentify\b', r'\bname the\b', r'\btell me\b'
            ],
            QuestionIntent.LIST: [
                r'\blist\b', r'\bname all\b', r'\benumerate\b', r'\bmention all\b',
                r'\bprovide.*list\b', r'\bgive.*examples\b', r'\bwhat are all\b'
            ],
            QuestionIntent.EXTRACT: [
                r'\bextract\b', r'\bfind\b', r'\bget\b', r'\bretrieve\b',
                r'\bshow me\b', r'\bgive me\b'
            ],
            QuestionIntent.CALCULATE: [
                r'\bcalculate\b', r'\bcompute\b', r'\bsolve\b', r'\bfind the value\b',
                r'\bwhat is.*\+\b', r'\bwhat is.*\-\b', r'\bwhat is.*\*\b'
            ],
            QuestionIntent.LOCATE: [
                r'\bwhere\b', r'\blocation\b', r'\bposition\b', r'\bplace\b'
            ],
            QuestionIntent.TEMPORAL: [
                r'\bwhen\b', r'\btime\b', r'\bdate\b', r'\byear\b', r'\bperiod\b'
            ]
        }
        
        # Format detection patterns
        self.FORMAT_PATTERNS = {
            AnswerFormat.NUMBER: [
                r'\bhow many\b', r'\bcount\b', r'\bnumber\b', r'\bquantity\b',
                r'\bhow much\b', r'\btotal\b', r'\bsum\b', r'\btemperature\b',
                r'\bwhat is the temperature\b', r'\bwhat.*temperature\b'
            ],
            AnswerFormat.NAME_LAST: [
                r'\blast name\b', r'\bsurname\b', r'\bfamily name\b',
                r'\blast names of\b', r'\bsurnames of\b', r'\blast names\b',
                r'\bwhat are the last names\b', r'\bthe last names of\b',
                r'\bwho are the authors\b', r'\bwho are the\b.*\bauthors\b'
            ],
            AnswerFormat.NAME_FIRST: [
                r'\bfirst name\b', r'\bgiven name\b', r'\bfirst names of\b',
                r'\bgiven names of\b'
            ],
            AnswerFormat.NAME_FULL: [
                r'\bfull name\b', r'\bcomplete name\b', r'\bwho\b', r'\bactor\b',
                r'\bauthor\b', r'\bwriter\b', r'\bdirector\b'
            ],
            AnswerFormat.LIST_ALPHABETICAL: [
                r'\blist\b', r'\bname all\b', r'\benumerate\b', r'\bwhat are\b',
                r'\blist.*alphabetical\b', r'\balphabetical.*order\b', r'\bin alphabetical order\b'
            ],
            AnswerFormat.PERCENTAGE: [
                r'\bpercentage\b', r'\bpercent\b', r'\b%\b', r'\brate\b'
            ],
            AnswerFormat.BOOLEAN: [
                r'\bis it\b', r'\bcan\b', r'\bdoes\b', r'\bwill\b', r'\btrue or false\b'
            ]
        }
        
        # Context modifiers that affect formatting
        self.CONTEXT_MODIFIERS = {
            'alphabetical': [r'\balphabetical\b', r'\bsorted\b', r'\bordered\b'],
            'chronological': [r'\bchronological\b', r'\btime order\b', r'\bsequence\b'],
            'numerical': [r'\bnumerical\b', r'\bnumber order\b'],
            'concise': [r'\bbrief\b', r'\bshort\b', r'\bconcise\b', r'\bsimple\b'],
            'detailed': [r'\bdetailed\b', r'\bexplain\b', r'\bdescribe\b', r'\belaborate\b'],
            'only': [r'\bonly\b', r'\bjust\b', r'\bmerely\b'],
            'all': [r'\ball\b', r'\bevery\b', r'\beach\b']
        }
    
    def analyze_question(self, question: str) -> QuestionAnalysis:
        """
        Perform comprehensive analysis of a question to determine expected answer format.
        
        Args:
            question: The question to analyze
            
        Returns:
            QuestionAnalysis with intent, format, and formatting rules
        """
        q_lower = question.lower().strip()
        
        # Detect intent
        intent = self._detect_intent(q_lower)
        
        # Detect expected format
        expected_format = self._detect_format(q_lower, intent)
        
        # Extract key entities and modifiers
        key_entities = self._extract_entities(q_lower)
        modifiers = self._extract_modifiers(q_lower)
        
        # Analyze context clues
        context_clues = self._analyze_context(q_lower, intent, expected_format)
        
        # Generate formatting rules
        formatting_rules = self._generate_formatting_rules(
            intent, expected_format, modifiers, context_clues
        )
        
        # Calculate confidence
        confidence = self._calculate_confidence(intent, expected_format, modifiers)
        
        return QuestionAnalysis(
            intent=intent,
            expected_format=expected_format,
            confidence=confidence,
            key_entities=key_entities,
            modifiers=modifiers,
            context_clues=context_clues,
            formatting_rules=formatting_rules
        )
    
    def _detect_intent(self, question: str) -> QuestionIntent:
        """Detect the primary intent of the question."""
        intent_scores = {}
        
        for intent, patterns in self.INTENT_PATTERNS.items():
            score = 0
            for pattern in patterns:
                if re.search(pattern, question):
                    score += 1
            intent_scores[intent] = score
        
        if not intent_scores or max(intent_scores.values()) == 0:
            return QuestionIntent.UNKNOWN
        
        return max(intent_scores, key=intent_scores.get)
    
    def _detect_format(self, question: str, intent: QuestionIntent) -> AnswerFormat:
        """Detect expected answer format based on question and intent."""
        format_scores = {}
        
        for format_type, patterns in self.FORMAT_PATTERNS.items():
            score = 0
            for pattern in patterns:
                if re.search(pattern, question):
                    score += 1
            format_scores[format_type] = score
        
        # Apply intent-based format preferences
        if intent == QuestionIntent.COUNT:
            format_scores[AnswerFormat.NUMBER] = format_scores.get(AnswerFormat.NUMBER, 0) + 2
        elif intent == QuestionIntent.LIST:
            format_scores[AnswerFormat.LIST_ALPHABETICAL] = format_scores.get(AnswerFormat.LIST_ALPHABETICAL, 0) + 2
        elif intent == QuestionIntent.IDENTIFY and any(word in question for word in ['who', 'author', 'actor']):
            format_scores[AnswerFormat.NAME_FULL] = format_scores.get(AnswerFormat.NAME_FULL, 0) + 2
        
        if not format_scores or max(format_scores.values()) == 0:
            return AnswerFormat.TEXT_CONCISE
        
        return max(format_scores, key=format_scores.get)
    
    def _extract_entities(self, question: str) -> List[str]:
        """Extract key entities from the question."""
        entities = []
        
        # Common entity patterns
        entity_patterns = [
            r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b',  # Proper nouns
            r'\b\d+\b',  # Numbers
            r'\b(?:movie|book|song|album|company|country|city)\b'  # Common entity types
        ]
        
        for pattern in entity_patterns:
            matches = re.findall(pattern, question)
            entities.extend(matches)
        
        return list(set(entities))
    
    def _extract_modifiers(self, question: str) -> List[str]:
        """Extract modifiers that affect answer formatting."""
        modifiers = []
        
        for modifier, patterns in self.CONTEXT_MODIFIERS.items():
            for pattern in patterns:
                if re.search(pattern, question):
                    modifiers.append(modifier)
                    break
        
        return modifiers
    
    def _analyze_context(self, question: str, intent: QuestionIntent, 
                        expected_format: AnswerFormat) -> Dict[str, Any]:
        """Analyze contextual clues in the question."""
        context = {
            'question_length': len(question),
            'has_numbers': bool(re.search(r'\d+', question)),
            'has_proper_nouns': bool(re.search(r'\b[A-Z][a-z]+\b', question)),
            'question_words': self._extract_question_words(question),
            'domain_hints': self._detect_domain(question)
        }
        
        return context
    
    def _extract_question_words(self, question: str) -> List[str]:
        """Extract question words (who, what, when, where, why, how)."""
        question_words = []
        patterns = [r'\bwho\b', r'\bwhat\b', r'\bwhen\b', r'\bwhere\b', 
                   r'\bwhy\b', r'\bhow\b', r'\bwhich\b']
        
        for pattern in patterns:
            if re.search(pattern, question):
                question_words.append(pattern.strip('\\b'))
        
        return question_words
    
    def _detect_domain(self, question: str) -> List[str]:
        """Detect domain-specific hints in the question."""
        domains = []
        
        domain_keywords = {
            'sports': ['player', 'team', 'game', 'sport', 'athlete', 'coach'],
            'entertainment': ['movie', 'actor', 'director', 'film', 'show', 'series'],
            'literature': ['book', 'author', 'novel', 'writer', 'poem', 'story'],
            'science': ['experiment', 'research', 'study', 'theory', 'hypothesis'],
            'geography': ['country', 'city', 'location', 'place', 'region'],
            'history': ['year', 'century', 'period', 'era', 'historical'],
            'mathematics': ['calculate', 'equation', 'formula', 'solve', 'compute']
        }
        
        for domain, keywords in domain_keywords.items():
            if any(keyword in question for keyword in keywords):
                domains.append(domain)
        
        return domains
    
    def _generate_formatting_rules(self, intent: QuestionIntent, 
                                 expected_format: AnswerFormat,
                                 modifiers: List[str],
                                 context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate specific formatting rules based on analysis."""
        rules = {
            'extract_numbers_only': expected_format in [AnswerFormat.NUMBER, AnswerFormat.PERCENTAGE],
            'alphabetize_lists': expected_format in [AnswerFormat.LIST_ALPHABETICAL],
            'chronological_order': 'chronological' in modifiers,
            'numerical_order': 'numerical' in modifiers,
            'remove_explanations': 'concise' in modifiers or expected_format == AnswerFormat.NUMBER,
            'include_details': 'detailed' in modifiers,
            'name_format': self._determine_name_format(expected_format),
            'max_length': self._determine_max_length(expected_format, modifiers),
            'case_sensitive': False,
            'preserve_order': 'chronological' in modifiers or 'numerical' in modifiers
        }
        
        return rules
    
    def _determine_name_format(self, expected_format: AnswerFormat) -> str:
        """Determine specific name formatting requirements."""
        format_map = {
            AnswerFormat.NAME_FIRST: 'first',
            AnswerFormat.NAME_LAST: 'last',
            AnswerFormat.NAME_FULL: 'full',
            AnswerFormat.NAME_INITIALS: 'initials'
        }
        return format_map.get(expected_format, 'full')
    
    def _determine_max_length(self, expected_format: AnswerFormat, 
                            modifiers: List[str]) -> int:
        """Determine maximum answer length based on format and modifiers."""
        if 'concise' in modifiers:
            return 50
        elif 'detailed' in modifiers:
            return 500
        elif expected_format == AnswerFormat.NUMBER:
            return 20
        elif expected_format in [AnswerFormat.LIST_ALPHABETICAL, AnswerFormat.LIST_CHRONOLOGICAL]:
            return 300
        else:
            return 200
    
    def _calculate_confidence(self, intent: QuestionIntent, 
                            expected_format: AnswerFormat,
                            modifiers: List[str]) -> float:
        """Calculate confidence score for the analysis."""
        base_confidence = 0.7
        
        # Boost confidence for clear patterns
        if intent != QuestionIntent.UNKNOWN:
            base_confidence += 0.1
        
        if expected_format != AnswerFormat.TEXT_CONCISE:
            base_confidence += 0.1
        
        if modifiers:
            base_confidence += 0.1
        
        return min(1.0, base_confidence)


def analyze_question_intelligently(question: str) -> QuestionAnalysis:
    """
    Convenience function for intelligent question analysis.
    
    Args:
        question: The question to analyze
        
    Returns:
        QuestionAnalysis with comprehensive formatting requirements
    """
    analyzer = IntelligentQuestionAnalyzer()
    return analyzer.analyze_question(question)