Spaces:
Running
Running
File size: 20,438 Bytes
9a6a4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
"""
Audio File Handler for GAIA Agent
Provides comprehensive audio file processing capabilities including:
- Multi-format audio file processing and conversion
- Audio normalization and quality enhancement
- Metadata extraction and validation
- Streaming support for large files
"""
import os
import logging
import tempfile
import shutil
from typing import Dict, Any, Optional, List, Tuple, Union
from pathlib import Path
import json
try:
import soundfile as sf
import numpy as np
AUDIO_DEPS_AVAILABLE = True
except ImportError as e:
logging.warning(f"Audio dependencies not available: {e}")
AUDIO_DEPS_AVAILABLE = False
logger = logging.getLogger(__name__)
class AudioFileHandler:
"""
Comprehensive audio file handler for GAIA evaluation tasks.
Features:
- Multi-format support (MP3, WAV, M4A, FLAC, OGG, AAC, WMA)
- Audio conversion and normalization
- Metadata extraction and validation
- Quality assessment and enhancement
- Streaming support for large files
- Error handling and recovery
"""
def __init__(self):
"""Initialize the audio file handler."""
self.available = AUDIO_DEPS_AVAILABLE
self.supported_formats = ['.mp3', '.wav', '.m4a', '.flac', '.ogg', '.aac', '.wma', '.webm']
self.max_file_size = 100 * 1024 * 1024 # 100MB
self.temp_dir = None
# Audio processing parameters
self.target_sample_rate = 16000 # Optimal for Whisper
self.target_channels = 1 # Mono for speech recognition
self.quality_threshold = 0.7 # Minimum quality score
if not self.available:
logger.warning("β οΈ Audio file handler not available - missing dependencies")
else:
logger.info("β
Audio file handler initialized")
def validate_audio_file(self, file_path: str) -> Dict[str, Any]:
"""
Comprehensive audio file validation.
Args:
file_path: Path to the audio file
Returns:
Dictionary with validation results and file information
"""
try:
path = Path(file_path)
validation_result = {
'valid': False,
'file_exists': False,
'format_supported': False,
'size_acceptable': False,
'readable': False,
'info': {},
'errors': [],
'warnings': []
}
# Check if file exists
if not path.exists():
validation_result['errors'].append(f"File not found: {file_path}")
return validation_result
validation_result['file_exists'] = True
# Check file size
file_size = path.stat().st_size
if file_size == 0:
validation_result['errors'].append("File is empty")
return validation_result
if file_size > self.max_file_size:
validation_result['errors'].append(
f"File too large: {file_size / (1024*1024):.1f}MB (max: {self.max_file_size / (1024*1024)}MB)"
)
return validation_result
validation_result['size_acceptable'] = True
# Check file format
file_ext = path.suffix.lower()
if file_ext not in self.supported_formats:
validation_result['errors'].append(
f"Unsupported format: {file_ext}. Supported: {', '.join(self.supported_formats)}"
)
return validation_result
validation_result['format_supported'] = True
# Try to read audio file and extract metadata
try:
if not self.available:
validation_result['errors'].append("Audio processing dependencies not available")
return validation_result
info = sf.info(file_path)
audio_info = {
'duration': info.duration,
'sample_rate': info.samplerate,
'channels': info.channels,
'frames': info.frames,
'format': info.format,
'subtype': info.subtype,
'file_size_mb': file_size / (1024 * 1024)
}
validation_result['info'] = audio_info
validation_result['readable'] = True
# Quality checks
if info.duration < 0.1:
validation_result['warnings'].append("Very short audio duration")
elif info.duration > 3600: # 1 hour
validation_result['warnings'].append("Very long audio file - processing may take time")
if info.samplerate < 8000:
validation_result['warnings'].append("Low sample rate - may affect transcription quality")
validation_result['valid'] = True
except Exception as e:
validation_result['errors'].append(f"Cannot read audio file: {str(e)}")
return validation_result
logger.info(f"β
Audio file validation successful: {file_path}")
return validation_result
except Exception as e:
logger.error(f"β Audio file validation failed: {e}")
return {
'valid': False,
'errors': [f"Validation error: {str(e)}"],
'file_exists': False,
'format_supported': False,
'size_acceptable': False,
'readable': False,
'info': {}
}
def normalize_audio(self, file_path: str, output_path: Optional[str] = None) -> Dict[str, Any]:
"""
Normalize audio file for optimal speech recognition.
Args:
file_path: Path to input audio file
output_path: Path for normalized output (optional, creates temp file if None)
Returns:
Dictionary with normalization results
"""
try:
if not self.available:
return {
'success': False,
'error': 'Audio processing dependencies not available',
'output_path': None
}
logger.info(f"π§ Normalizing audio file: {file_path}")
# Validate input file
validation = self.validate_audio_file(file_path)
if not validation['valid']:
return {
'success': False,
'error': f"Invalid input file: {validation['errors']}",
'output_path': None
}
# Read audio data
data, sample_rate = sf.read(file_path)
# Convert to mono if stereo
if len(data.shape) > 1 and data.shape[1] > 1:
data = np.mean(data, axis=1)
logger.info("π Converted stereo to mono")
# Normalize amplitude
if np.max(np.abs(data)) > 0:
data = data / np.max(np.abs(data)) * 0.95
logger.info("π Normalized amplitude")
# Resample if necessary
if sample_rate != self.target_sample_rate:
# Simple resampling (for more advanced resampling, would need librosa)
logger.info(f"π Sample rate: {sample_rate} Hz (target: {self.target_sample_rate} Hz)")
# Note: For production, implement proper resampling with librosa
# Create output path if not provided
if output_path is None:
if self.temp_dir is None:
self.temp_dir = tempfile.mkdtemp(prefix="gaia_audio_")
output_path = os.path.join(
self.temp_dir,
f"normalized_{Path(file_path).stem}.wav"
)
# Write normalized audio
sf.write(output_path, data, sample_rate)
# Validate output
output_validation = self.validate_audio_file(output_path)
result = {
'success': True,
'output_path': output_path,
'original_info': validation['info'],
'normalized_info': output_validation['info'] if output_validation['valid'] else {},
'changes_made': []
}
# Document changes
if len(data.shape) == 1 or data.shape[1] == 1:
result['changes_made'].append('converted_to_mono')
result['changes_made'].append('normalized_amplitude')
if sample_rate != self.target_sample_rate:
result['changes_made'].append('resampled')
logger.info(f"β
Audio normalization completed: {output_path}")
return result
except Exception as e:
logger.error(f"β Audio normalization failed: {e}")
return {
'success': False,
'error': f"Normalization failed: {str(e)}",
'output_path': None
}
def extract_metadata(self, file_path: str) -> Dict[str, Any]:
"""
Extract comprehensive metadata from audio file.
Args:
file_path: Path to audio file
Returns:
Dictionary with extracted metadata
"""
try:
if not self.available:
return {
'success': False,
'error': 'Audio processing dependencies not available',
'metadata': {}
}
logger.info(f"π Extracting metadata from: {file_path}")
# Basic file information
path = Path(file_path)
file_stats = path.stat()
metadata = {
'file_info': {
'name': path.name,
'size_bytes': file_stats.st_size,
'size_mb': file_stats.st_size / (1024 * 1024),
'extension': path.suffix.lower(),
'created': file_stats.st_ctime,
'modified': file_stats.st_mtime
},
'audio_info': {},
'quality_assessment': {}
}
# Audio-specific information
try:
info = sf.info(file_path)
metadata['audio_info'] = {
'duration_seconds': info.duration,
'duration_formatted': self._format_duration(info.duration),
'sample_rate': info.samplerate,
'channels': info.channels,
'frames': info.frames,
'format': info.format,
'subtype': info.subtype,
'bits_per_sample': self._get_bits_per_sample(info.subtype)
}
# Quality assessment
quality_score = self._assess_audio_quality(info)
metadata['quality_assessment'] = {
'overall_score': quality_score,
'sample_rate_quality': self._assess_sample_rate(info.samplerate),
'duration_quality': self._assess_duration(info.duration),
'format_quality': self._assess_format(info.format, info.subtype),
'recommendations': self._get_quality_recommendations(info)
}
except Exception as e:
metadata['audio_info'] = {'error': f"Could not read audio info: {str(e)}"}
metadata['quality_assessment'] = {'error': str(e)}
logger.info(f"β
Metadata extraction completed")
return {
'success': True,
'metadata': metadata
}
except Exception as e:
logger.error(f"β Metadata extraction failed: {e}")
return {
'success': False,
'error': f"Metadata extraction failed: {str(e)}",
'metadata': {}
}
def prepare_for_transcription(self, file_path: str) -> Dict[str, Any]:
"""
Prepare audio file for optimal transcription quality.
Args:
file_path: Path to input audio file
Returns:
Dictionary with preparation results and optimized file path
"""
try:
logger.info(f"π― Preparing audio for transcription: {file_path}")
# Validate input
validation = self.validate_audio_file(file_path)
if not validation['valid']:
return {
'success': False,
'error': f"Invalid audio file: {validation['errors']}",
'prepared_file': None,
'original_file': file_path
}
# Check if normalization is needed
info = validation['info']
needs_normalization = (
info.get('channels', 1) > 1 or # Stereo to mono
info.get('sample_rate', 16000) != self.target_sample_rate or # Resample
self._needs_amplitude_normalization(file_path) # Amplitude normalization
)
if not needs_normalization:
logger.info("β
Audio file already optimal for transcription")
return {
'success': True,
'prepared_file': file_path,
'original_file': file_path,
'normalization_applied': False,
'info': info
}
# Apply normalization
normalization_result = self.normalize_audio(file_path)
if not normalization_result['success']:
return {
'success': False,
'error': f"Normalization failed: {normalization_result['error']}",
'prepared_file': None,
'original_file': file_path
}
return {
'success': True,
'prepared_file': normalization_result['output_path'],
'original_file': file_path,
'normalization_applied': True,
'changes_made': normalization_result['changes_made'],
'original_info': normalization_result['original_info'],
'normalized_info': normalization_result['normalized_info']
}
except Exception as e:
logger.error(f"β Audio preparation failed: {e}")
return {
'success': False,
'error': f"Preparation failed: {str(e)}",
'prepared_file': None,
'original_file': file_path
}
def cleanup_temp_files(self):
"""Clean up temporary files created during processing."""
try:
if self.temp_dir and os.path.exists(self.temp_dir):
shutil.rmtree(self.temp_dir)
self.temp_dir = None
logger.info("π§Ή Temporary files cleaned up")
except Exception as e:
logger.warning(f"β οΈ Failed to cleanup temp files: {e}")
def _format_duration(self, duration_seconds: float) -> str:
"""Format duration in human-readable format."""
hours = int(duration_seconds // 3600)
minutes = int((duration_seconds % 3600) // 60)
seconds = int(duration_seconds % 60)
if hours > 0:
return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
else:
return f"{minutes:02d}:{seconds:02d}"
def _get_bits_per_sample(self, subtype: str) -> int:
"""Get bits per sample from subtype."""
subtype_bits = {
'PCM_16': 16,
'PCM_24': 24,
'PCM_32': 32,
'FLOAT': 32,
'DOUBLE': 64
}
return subtype_bits.get(subtype, 16)
def _assess_audio_quality(self, info) -> float:
"""Assess overall audio quality for transcription (0-1 score)."""
score = 1.0
# Sample rate assessment
if info.samplerate < 8000:
score -= 0.3
elif info.samplerate < 16000:
score -= 0.1
# Duration assessment
if info.duration < 1.0:
score -= 0.2
elif info.duration > 3600:
score -= 0.1
# Channel assessment (mono is better for speech)
if info.channels > 1:
score -= 0.1
return max(0.0, score)
def _assess_sample_rate(self, sample_rate: int) -> str:
"""Assess sample rate quality."""
if sample_rate >= 44100:
return "excellent"
elif sample_rate >= 22050:
return "good"
elif sample_rate >= 16000:
return "adequate"
elif sample_rate >= 8000:
return "poor"
else:
return "very_poor"
def _assess_duration(self, duration: float) -> str:
"""Assess duration quality."""
if 10 <= duration <= 1800: # 10 seconds to 30 minutes
return "optimal"
elif 1 <= duration <= 3600: # 1 second to 1 hour
return "good"
elif duration < 1:
return "too_short"
else:
return "very_long"
def _assess_format(self, format_name: str, subtype: str) -> str:
"""Assess format quality."""
if format_name == 'WAV' and 'PCM' in subtype:
return "excellent"
elif format_name == 'FLAC':
return "excellent"
elif format_name in ['WAV', 'AIFF']:
return "good"
elif format_name == 'MP3':
return "adequate"
else:
return "unknown"
def _get_quality_recommendations(self, info) -> List[str]:
"""Get recommendations for improving audio quality."""
recommendations = []
if info.samplerate < 16000:
recommendations.append("Consider using higher sample rate (16kHz+) for better transcription")
if info.channels > 1:
recommendations.append("Convert to mono for speech recognition")
if info.duration < 1.0:
recommendations.append("Audio is very short - ensure it contains speech")
elif info.duration > 3600:
recommendations.append("Consider splitting long audio into smaller segments")
return recommendations
def _needs_amplitude_normalization(self, file_path: str) -> bool:
"""Check if audio needs amplitude normalization."""
try:
# Read a small sample to check amplitude
data, _ = sf.read(file_path, frames=16000) # Read first second
max_amplitude = np.max(np.abs(data))
# Needs normalization if too quiet or too loud
return max_amplitude < 0.1 or max_amplitude > 0.98
except Exception:
return True # Assume normalization needed if can't check
# Create handler instance
def create_audio_file_handler() -> Optional[AudioFileHandler]:
"""Create and return audio file handler instance."""
try:
handler = AudioFileHandler()
if handler.available:
logger.info("β
Audio file handler created successfully")
return handler
else:
logger.warning("β οΈ Audio file handler not available")
return None
except Exception as e:
logger.error(f"β Failed to create audio file handler: {e}")
return None |