Spaces:
Running
Running
File size: 34,183 Bytes
9a6a4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
"""
Mathematical Engine for GAIA Agent
Advanced mathematical computation capabilities with symbolic mathematics.
Features:
- Symbolic mathematics with SymPy
- Numerical computations with high precision
- Statistical analysis and probability
- Equation solving and optimization
- Mathematical expression parsing and evaluation
- Formula manipulation and simplification
"""
import logging
import math
import cmath
import decimal
import fractions
import statistics
import re
from typing import Dict, Any, Optional, Union, List, Tuple
import json
# Mathematical libraries
try:
import numpy as np
NUMPY_AVAILABLE = True
except ImportError:
NUMPY_AVAILABLE = False
try:
import scipy
from scipy import stats, optimize, integrate, linalg, special
SCIPY_AVAILABLE = True
except ImportError:
SCIPY_AVAILABLE = False
try:
import sympy as sp
from sympy import (
symbols, Symbol, solve, diff, integrate as sp_integrate,
simplify, expand, factor, limit, series, Matrix, pi, E, I,
sin, cos, tan, exp, log, sqrt, Abs, oo, zoo, nan,
Rational, Float, Integer, Poly, roots, cancel, apart,
together, collect, trigsimp, powsimp, radsimp, logcombine
)
SYMPY_AVAILABLE = True
except ImportError:
SYMPY_AVAILABLE = False
logger = logging.getLogger(__name__)
class MathematicalExpressionParser:
"""Parse and evaluate mathematical expressions safely."""
def __init__(self):
"""Initialize the expression parser."""
self.safe_functions = {
# Basic math functions
'abs': abs, 'round': round, 'min': min, 'max': max,
'sum': sum, 'pow': pow,
# Math module functions
'sqrt': math.sqrt, 'exp': math.exp, 'log': math.log,
'log10': math.log10, 'log2': math.log2,
'sin': math.sin, 'cos': math.cos, 'tan': math.tan,
'asin': math.asin, 'acos': math.acos, 'atan': math.atan,
'atan2': math.atan2, 'sinh': math.sinh, 'cosh': math.cosh,
'tanh': math.tanh, 'asinh': math.asinh, 'acosh': math.acosh,
'atanh': math.atanh, 'degrees': math.degrees, 'radians': math.radians,
'ceil': math.ceil, 'floor': math.floor, 'trunc': math.trunc,
'factorial': math.factorial, 'gcd': math.gcd,
'gamma': math.gamma, 'lgamma': math.lgamma,
# Constants
'pi': math.pi, 'e': math.e, 'tau': math.tau, 'inf': math.inf,
'nan': math.nan,
}
# Add numpy functions if available
if NUMPY_AVAILABLE:
self.safe_functions.update({
'array': np.array, 'zeros': np.zeros, 'ones': np.ones,
'arange': np.arange, 'linspace': np.linspace,
'mean': np.mean, 'median': np.median, 'std': np.std,
'var': np.var, 'percentile': np.percentile,
'dot': np.dot, 'cross': np.cross, 'norm': np.linalg.norm,
})
def parse_expression(self, expression: str) -> Any:
"""
Parse and evaluate a mathematical expression safely.
Args:
expression: Mathematical expression as string
Returns:
Evaluated result
"""
try:
# Clean the expression
cleaned_expr = self._clean_expression(expression)
# Evaluate using safe functions
result = eval(cleaned_expr, {"__builtins__": {}}, self.safe_functions)
return result
except Exception as e:
logger.error(f"Failed to parse expression '{expression}': {e}")
raise ValueError(f"Invalid mathematical expression: {e}")
def _clean_expression(self, expression: str) -> str:
"""Clean and validate mathematical expression."""
# Remove whitespace
cleaned = expression.strip()
# Replace common mathematical notation
replacements = {
'^': '**', # Power operator
'×': '*', # Multiplication
'÷': '/', # Division
'√': 'sqrt', # Square root
}
for old, new in replacements.items():
cleaned = cleaned.replace(old, new)
return cleaned
class SymbolicMathEngine:
"""Symbolic mathematics engine using SymPy."""
def __init__(self):
"""Initialize symbolic math engine."""
self.available = SYMPY_AVAILABLE
if not self.available:
logger.warning("SymPy not available - symbolic math features disabled")
def solve_equation(self, equation: str, variable: str = 'x') -> List[Any]:
"""
Solve an equation symbolically.
Args:
equation: Equation as string (e.g., "x**2 - 4 = 0")
variable: Variable to solve for
Returns:
List of solutions
"""
if not self.available:
raise RuntimeError("SymPy not available for symbolic solving")
try:
# Create symbol
var = symbols(variable)
# Parse equation
if '=' in equation:
left, right = equation.split('=', 1)
expr = sp.sympify(left.strip()) - sp.sympify(right.strip())
else:
expr = sp.sympify(equation)
# Solve equation
solutions = solve(expr, var)
return [float(sol.evalf()) if sol.is_real else complex(sol.evalf())
for sol in solutions]
except Exception as e:
logger.error(f"Failed to solve equation '{equation}': {e}")
raise ValueError(f"Could not solve equation: {e}")
def differentiate(self, expression: str, variable: str = 'x', order: int = 1) -> str:
"""
Compute derivative of an expression.
Args:
expression: Mathematical expression
variable: Variable to differentiate with respect to
order: Order of derivative
Returns:
Derivative as string
"""
if not self.available:
raise RuntimeError("SymPy not available for differentiation")
try:
var = symbols(variable)
expr = sp.sympify(expression)
derivative = diff(expr, var, order)
return str(derivative)
except Exception as e:
logger.error(f"Failed to differentiate '{expression}': {e}")
raise ValueError(f"Could not compute derivative: {e}")
def integrate(self, expression: str, variable: str = 'x',
limits: Optional[Tuple[float, float]] = None) -> str:
"""
Compute integral of an expression.
Args:
expression: Mathematical expression
variable: Variable to integrate with respect to
limits: Integration limits (a, b) for definite integral
Returns:
Integral as string or numerical value
"""
if not self.available:
raise RuntimeError("SymPy not available for integration")
try:
var = symbols(variable)
expr = sp.sympify(expression)
if limits:
# Definite integral
result = sp_integrate(expr, (var, limits[0], limits[1]))
return float(result.evalf()) if result.is_real else str(result)
else:
# Indefinite integral
result = sp_integrate(expr, var)
return str(result)
except Exception as e:
logger.error(f"Failed to integrate '{expression}': {e}")
raise ValueError(f"Could not compute integral: {e}")
def simplify_expression(self, expression: str) -> str:
"""
Simplify a mathematical expression.
Args:
expression: Mathematical expression to simplify
Returns:
Simplified expression as string
"""
if not self.available:
raise RuntimeError("SymPy not available for simplification")
try:
expr = sp.sympify(expression)
simplified = simplify(expr)
return str(simplified)
except Exception as e:
logger.error(f"Failed to simplify '{expression}': {e}")
raise ValueError(f"Could not simplify expression: {e}")
def factor_expression(self, expression: str) -> str:
"""
Factor a mathematical expression.
Args:
expression: Mathematical expression to factor
Returns:
Factored expression as string
"""
if not self.available:
raise RuntimeError("SymPy not available for factoring")
try:
expr = sp.sympify(expression)
factored = factor(expr)
return str(factored)
except Exception as e:
logger.error(f"Failed to factor '{expression}': {e}")
raise ValueError(f"Could not factor expression: {e}")
def expand_expression(self, expression: str) -> str:
"""
Expand a mathematical expression.
Args:
expression: Mathematical expression to expand
Returns:
Expanded expression as string
"""
if not self.available:
raise RuntimeError("SymPy not available for expansion")
try:
expr = sp.sympify(expression)
expanded = expand(expr)
return str(expanded)
except Exception as e:
logger.error(f"Failed to expand '{expression}': {e}")
raise ValueError(f"Could not expand expression: {e}")
class NumericalMathEngine:
"""Numerical mathematics engine using NumPy and SciPy."""
def __init__(self):
"""Initialize numerical math engine."""
self.numpy_available = NUMPY_AVAILABLE
self.scipy_available = SCIPY_AVAILABLE
if not self.numpy_available:
logger.warning("NumPy not available - numerical features limited")
if not self.scipy_available:
logger.warning("SciPy not available - advanced numerical features disabled")
def compute_statistics(self, data: List[float]) -> Dict[str, float]:
"""
Compute comprehensive statistics for numerical data.
Args:
data: List of numerical values
Returns:
Dictionary of statistical measures
"""
if not data:
raise ValueError("Empty data provided")
try:
# Convert to numpy array if available
if self.numpy_available:
arr = np.array(data, dtype=float) # Ensure float type
stats_dict = {
'count': len(data),
'mean': float(np.mean(arr)),
'median': float(np.median(arr)),
'std': float(np.std(arr, ddof=1)), # Sample standard deviation
'variance': float(np.var(arr, ddof=1)), # Sample variance
'min': float(np.min(arr)),
'max': float(np.max(arr)),
'sum': float(np.sum(arr)),
'range': float(np.max(arr) - np.min(arr)),
'q1': float(np.percentile(arr, 25)),
'q3': float(np.percentile(arr, 75)),
'iqr': float(np.percentile(arr, 75) - np.percentile(arr, 25))
}
# Add SciPy statistics if available
if self.scipy_available:
try:
mode_result = stats.mode(arr, keepdims=True)
mode_value = float(mode_result.mode[0]) if len(mode_result.mode) > 0 else None
stats_dict.update({
'skewness': float(stats.skew(arr)),
'kurtosis': float(stats.kurtosis(arr)),
'mode': mode_value
})
except Exception as scipy_error:
logger.debug(f"SciPy statistics failed: {scipy_error}")
# Add basic mode calculation fallback
try:
unique, counts = np.unique(arr, return_counts=True)
mode_idx = np.argmax(counts)
stats_dict['mode'] = float(unique[mode_idx])
except:
stats_dict['mode'] = None
else:
# Fallback to built-in statistics
stats_dict = {
'count': len(data),
'mean': statistics.mean(data),
'median': statistics.median(data),
'std': statistics.stdev(data) if len(data) > 1 else 0,
'variance': statistics.variance(data) if len(data) > 1 else 0,
'min': min(data),
'max': max(data),
'sum': sum(data),
'range': max(data) - min(data)
}
try:
stats_dict['mode'] = statistics.mode(data)
except statistics.StatisticsError:
stats_dict['mode'] = None
return stats_dict
except Exception as e:
logger.error(f"Failed to compute statistics: {e}")
raise ValueError(f"Could not compute statistics: {e}")
def solve_linear_system(self, A: List[List[float]], b: List[float]) -> List[float]:
"""
Solve linear system Ax = b.
Args:
A: Coefficient matrix
b: Right-hand side vector
Returns:
Solution vector
"""
if not self.numpy_available:
raise RuntimeError("NumPy required for linear system solving")
try:
A_array = np.array(A)
b_array = np.array(b)
solution = np.linalg.solve(A_array, b_array)
return solution.tolist()
except Exception as e:
logger.error(f"Failed to solve linear system: {e}")
raise ValueError(f"Could not solve linear system: {e}")
def find_roots(self, coefficients: List[float]) -> List[complex]:
"""
Find roots of a polynomial.
Args:
coefficients: Polynomial coefficients (highest degree first)
Returns:
List of roots (complex numbers)
"""
if not self.numpy_available:
raise RuntimeError("NumPy required for root finding")
try:
roots = np.roots(coefficients)
return [complex(root) for root in roots]
except Exception as e:
logger.error(f"Failed to find roots: {e}")
raise ValueError(f"Could not find polynomial roots: {e}")
def numerical_integration(self, func_str: str, a: float, b: float,
method: str = 'quad') -> float:
"""
Perform numerical integration.
Args:
func_str: Function as string (e.g., "x**2 + 1")
a: Lower limit
b: Upper limit
method: Integration method
Returns:
Integral value
"""
if not self.scipy_available:
raise RuntimeError("SciPy required for numerical integration")
try:
# Create function from string
def func(x):
return eval(func_str, {"x": x, "math": math, "np": np})
if method == 'quad':
result, _ = integrate.quad(func, a, b)
else:
raise ValueError(f"Unknown integration method: {method}")
return float(result)
except Exception as e:
logger.error(f"Failed numerical integration: {e}")
raise ValueError(f"Could not perform numerical integration: {e}")
class MathematicalEngine:
"""Comprehensive mathematical engine combining symbolic and numerical capabilities."""
def __init__(self):
"""Initialize the mathematical engine."""
self.parser = MathematicalExpressionParser()
self.symbolic = SymbolicMathEngine()
self.numerical = NumericalMathEngine()
self.available = True
logger.info("MathematicalEngine initialized")
logger.info(f"Symbolic math available: {self.symbolic.available}")
logger.info(f"NumPy available: {self.numerical.numpy_available}")
logger.info(f"SciPy available: {self.numerical.scipy_available}")
def evaluate_expression(self, expression: str, variables: Optional[Dict[str, float]] = None, precision: int = 15) -> Dict[str, Any]:
"""
Evaluate a mathematical expression with high precision.
Args:
expression: Mathematical expression to evaluate
variables: Dictionary of variable values (e.g., {"x": 5, "y": 3})
precision: Decimal precision for results
Returns:
Dictionary with success status and result
"""
try:
# Try symbolic evaluation first for exact results
if self.symbolic.available:
try:
# Pre-process expression to handle common mathematical constants
processed_expr = expression.replace('e**', 'E**').replace('e^', 'E^')
# Handle standalone 'e' that should be Euler's number
import re
processed_expr = re.sub(r'\be\b', 'E', processed_expr)
expr = sp.sympify(processed_expr)
# Substitute variables if provided
if variables:
for var_name, var_value in variables.items():
var_symbol = symbols(var_name)
expr = expr.subs(var_symbol, var_value)
result = expr.evalf(precision)
# Always try to convert to numerical value
if result.is_real:
return {"success": True, "result": float(result)}
elif result.is_complex:
return {"success": True, "result": complex(result)}
elif result.is_number:
# Try to extract numerical value from symbolic result
try:
numerical_result = float(result)
return {"success": True, "result": numerical_result}
except:
pass
# If we can't get a numerical result, try to evaluate further
try:
# Method 1: Substitute symbolic constants with numerical values
expr_with_constants = expr.subs([(sp.pi, math.pi), (sp.E, math.e)])
numerical_result = float(expr_with_constants.evalf(precision))
return {"success": True, "result": numerical_result}
except:
try:
# Method 2: Use lambdify to convert to numerical function
func = sp.lambdify([], expr, 'math')
numerical_result = float(func())
return {"success": True, "result": numerical_result}
except:
try:
# Method 3: Force numerical evaluation with N()
numerical_result = float(sp.N(expr, precision))
return {"success": True, "result": numerical_result}
except:
return {"success": True, "result": str(result)}
except:
pass
# Fallback to numerical evaluation
if variables:
# Create a safe namespace with variables
safe_namespace = self.parser.safe_functions.copy()
safe_namespace.update(variables)
result = eval(expression, {"__builtins__": {}}, safe_namespace)
else:
result = self.parser.parse_expression(expression)
# Format with specified precision
if isinstance(result, float):
result = round(result, precision)
return {"success": True, "result": result}
except Exception as e:
logger.error(f"Failed to evaluate expression '{expression}': {e}")
return {"success": False, "error": str(e)}
def solve_mathematical_problem(self, problem_type: str, **kwargs) -> Any:
"""
Solve various types of mathematical problems.
Args:
problem_type: Type of problem to solve
**kwargs: Problem-specific parameters
Returns:
Solution result
"""
try:
if problem_type == "equation":
return self.symbolic.solve_equation(kwargs['equation'], kwargs.get('variable', 'x'))
elif problem_type == "derivative":
return self.symbolic.differentiate(
kwargs['expression'],
kwargs.get('variable', 'x'),
kwargs.get('order', 1)
)
elif problem_type == "integral":
return self.symbolic.integrate(
kwargs['expression'],
kwargs.get('variable', 'x'),
kwargs.get('limits')
)
elif problem_type == "simplify":
return self.symbolic.simplify_expression(kwargs['expression'])
elif problem_type == "factor":
return self.symbolic.factor_expression(kwargs['expression'])
elif problem_type == "expand":
return self.symbolic.expand_expression(kwargs['expression'])
elif problem_type == "statistics":
return self.numerical.compute_statistics(kwargs['data'])
elif problem_type == "linear_system":
return self.numerical.solve_linear_system(kwargs['A'], kwargs['b'])
elif problem_type == "polynomial_roots":
return self.numerical.find_roots(kwargs['coefficients'])
elif problem_type == "numerical_integration":
return self.numerical.numerical_integration(
kwargs['function'],
kwargs['a'],
kwargs['b'],
kwargs.get('method', 'quad')
)
else:
raise ValueError(f"Unknown problem type: {problem_type}")
except Exception as e:
logger.error(f"Failed to solve {problem_type} problem: {e}")
raise
def compute_derivative(self, expression: str, variable: str = 'x', order: int = 1) -> Dict[str, Any]:
"""
Compute derivative of an expression.
Args:
expression: Mathematical expression
variable: Variable to differentiate with respect to
order: Order of derivative
Returns:
Dictionary with success status and derivative
"""
try:
derivative = self.symbolic.differentiate(expression, variable, order)
return {"success": True, "derivative": derivative}
except Exception as e:
logger.error(f"Failed to compute derivative of '{expression}': {e}")
return {"success": False, "error": str(e)}
def compute_integral(self, expression: str, variable: str = 'x',
limits: Optional[Tuple[float, float]] = None) -> Dict[str, Any]:
"""
Compute integral of an expression.
Args:
expression: Mathematical expression
variable: Variable to integrate with respect to
limits: Integration limits (a, b) for definite integral
Returns:
Dictionary with success status and integral
"""
try:
integral = self.symbolic.integrate(expression, variable, limits)
return {"success": True, "integral": integral}
except Exception as e:
logger.error(f"Failed to compute integral of '{expression}': {e}")
return {"success": False, "error": str(e)}
def solve_equation(self, equation: str, variable: str = 'x') -> Dict[str, Any]:
"""
Solve an equation symbolically.
Args:
equation: Equation as string (e.g., "x**2 - 4 = 0")
variable: Variable to solve for
Returns:
Dictionary with success status and solutions
"""
try:
solutions = self.symbolic.solve_equation(equation, variable)
return {"success": True, "solutions": solutions}
except Exception as e:
logger.error(f"Failed to solve equation '{equation}': {e}")
return {"success": False, "error": str(e)}
def analyze_statistics(self, data: List[float]) -> Dict[str, Any]:
"""
Compute comprehensive statistics for numerical data.
Args:
data: List of numerical values
Returns:
Dictionary with success status and statistical measures
"""
try:
stats = self.numerical.compute_statistics(data)
result = {"success": True}
# Map field names to match test expectations
for key, value in stats.items():
if key == 'std':
result['std_dev'] = value
else:
result[key] = value
return result
except Exception as e:
logger.error(f"Failed to analyze statistics: {e}")
return {"success": False, "error": str(e)}
def get_capabilities(self) -> Dict[str, Any]:
"""Get engine capabilities and status."""
return {
'available': self.available,
'symbolic_math': self.symbolic.available,
'numerical_math': self.numerical.numpy_available,
'advanced_numerical': self.numerical.scipy_available,
'supported_operations': [
'expression_evaluation',
'equation_solving',
'differentiation',
'integration',
'simplification',
'factoring',
'expansion',
'statistics',
'linear_algebra',
'polynomial_operations',
'numerical_integration'
],
'precision': 'up to 50 decimal places (symbolic)',
'libraries': {
'sympy': self.symbolic.available,
'numpy': self.numerical.numpy_available,
'scipy': self.numerical.scipy_available
}
}
# AGNO tool registration
class MathematicalEngineTool:
"""AGNO-compatible mathematical engine tool."""
def __init__(self):
"""Initialize the tool."""
self.engine = MathematicalEngine()
self.available = self.engine.available
logger.info("MathematicalEngineTool initialized")
def evaluate_mathematical_expression(self, expression: str, precision: int = 15) -> str:
"""
Evaluate a mathematical expression.
Args:
expression: Mathematical expression to evaluate
precision: Decimal precision
Returns:
Formatted result
"""
try:
result = self.engine.evaluate_expression(expression, None, precision)
if result['success']:
return f"Expression: {expression}\nResult: {result['result']}"
else:
return f"Error evaluating '{expression}': {result['error']}"
except Exception as e:
return f"Error evaluating '{expression}': {e}"
def solve_equation(self, equation: str, variable: str = 'x') -> str:
"""
Solve an equation symbolically.
Args:
equation: Equation to solve
variable: Variable to solve for
Returns:
Solutions
"""
try:
solutions = self.engine.solve_mathematical_problem(
'equation', equation=equation, variable=variable
)
return f"Equation: {equation}\nSolutions for {variable}: {solutions}"
except Exception as e:
return f"Error solving equation '{equation}': {e}"
def compute_derivative(self, expression: str, variable: str = 'x', order: int = 1) -> str:
"""
Compute derivative of an expression.
Args:
expression: Expression to differentiate
variable: Variable to differentiate with respect to
order: Order of derivative
Returns:
Derivative
"""
try:
derivative = self.engine.solve_mathematical_problem(
'derivative', expression=expression, variable=variable, order=order
)
return f"d^{order}/d{variable}^{order}({expression}) = {derivative}"
except Exception as e:
return f"Error computing derivative: {e}"
def compute_integral(self, expression: str, variable: str = 'x',
limits: Optional[str] = None) -> str:
"""
Compute integral of an expression.
Args:
expression: Expression to integrate
variable: Variable to integrate with respect to
limits: Integration limits as "a,b" for definite integral
Returns:
Integral
"""
try:
limit_tuple = None
if limits:
a, b = map(float, limits.split(','))
limit_tuple = (a, b)
integral = self.engine.solve_mathematical_problem(
'integral', expression=expression, variable=variable, limits=limit_tuple
)
if limit_tuple:
return f"∫[{limit_tuple[0]} to {limit_tuple[1]}] {expression} d{variable} = {integral}"
else:
return f"∫ {expression} d{variable} = {integral}"
except Exception as e:
return f"Error computing integral: {e}"
def analyze_data_statistics(self, data: str) -> str:
"""
Compute statistics for numerical data.
Args:
data: Comma-separated numerical values
Returns:
Statistical analysis
"""
try:
# Parse data
values = [float(x.strip()) for x in data.split(',') if x.strip()]
stats = self.engine.solve_mathematical_problem('statistics', data=values)
result = "Statistical Analysis:\n"
for key, value in stats.items():
if value is not None:
result += f"{key.capitalize()}: {value}\n"
return result.strip()
except Exception as e:
return f"Error analyzing data: {e}"
def get_mathematical_engine_tools():
"""Get mathematical engine tools for AGNO registration."""
tool = MathematicalEngineTool()
return [
{
'name': 'evaluate_mathematical_expression',
'function': tool.evaluate_mathematical_expression,
'description': 'Evaluate mathematical expressions with high precision'
},
{
'name': 'solve_equation',
'function': tool.solve_equation,
'description': 'Solve equations symbolically'
},
{
'name': 'compute_derivative',
'function': tool.compute_derivative,
'description': 'Compute derivatives of mathematical expressions'
},
{
'name': 'compute_integral',
'function': tool.compute_integral,
'description': 'Compute integrals (definite and indefinite)'
},
{
'name': 'analyze_data_statistics',
'function': tool.analyze_data_statistics,
'description': 'Perform statistical analysis on numerical data'
}
]
if __name__ == "__main__":
# Test the mathematical engine
engine = MathematicalEngine()
print("Testing MathematicalEngine:")
print("=" * 50)
# Test expression evaluation
test_expr = "sqrt(2) * pi + e**2"
result = engine.evaluate_expression(test_expr)
print(f"Expression: {test_expr}")
print(f"Result: {result}")
print()
# Test capabilities
capabilities = engine.get_capabilities()
print("Engine Capabilities:")
print(json.dumps(capabilities, indent=2)) |